Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(22): eado0077, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809980

RESUMO

While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.


Assuntos
Receptor CB1 de Canabinoide , Transdução de Sinais , Sinapses , Transmissão Sináptica , Animais , Transmissão Sináptica/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Sinapses/metabolismo , Terminações Pré-Sinápticas/metabolismo , Camundongos , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Dronabinol/farmacologia
2.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38766015

RESUMO

The increasing prevalence of cannabis use during pregnancy has raised significant medical concerns, primarily related to the presence of Δ9-tetrahydrocannabinol (THC), which readily crosses the placenta and impacts fetal brain development. Previous research has identified midbrain dopaminergic neuronal alterations related to maternal THC consumption. However, the enduring consequences that prenatal cannabis exposure (PCE) has on striatum-based processing during voluntary reward pursuit have not been specifically determined. Here, we characterize PCE rats during food (palatable pellets) or opioid (remifentanyl)-maintained reward seeking. We find that the supra motivational phenotype of PCE rats is independent of value-based processing and is instead related to augmented reinforcing efficiency of opioid rewards. Our findings reveal that in utero THC exposure leads to increased cue-evoked dopamine release responses and an overrepresentation of cue-aligned, effort-driven striatal patterns of encoding. Recapitulating findings in humans, drug-related neurobiological adaptations of PCE were more pronounced in males, who similarly showed increased vulnerability for relapse. Collectively, these findings indicate that prenatal THC exposure in male rats engenders a pronounced neurodevelopmental susceptibility to addiction-like disorders later in life.

3.
Neuropharmacology ; 233: 109548, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080337

RESUMO

Vulnerability to cocaine use disorder depends upon a combination of genetic and environmental risk factors. While early life adversity is a critical environmental vulnerability factor for drug misuse, allelic variants of the monoamine oxidase A (MAOA) gene have been shown to moderate its influence on the risk of drug-related problems. However, data on the interactions between MAOA variants and early life stress (ES) with respect to predisposition to cocaine abuse are limited. Here, we show that a mouse model capturing the interaction of genetic (low-activity alleles of the Maoa gene; MAOANeo) and environmental (i.e., ES) vulnerability factors displays an increased sensitivity to repeated in vivo cocaine psychomotor stimulant actions associated with a reduction of GABAA receptor-mediated inhibition of dopamine neurons of the ventral tegmental area (VTA). Depolarization-induced suppression of inhibition (DSI), a 2-arachidonoylglycerol (2AG)-dependent form of short-term plasticity, also becomes readily expressed by dopamine neurons from male MAOANeo ES mice repeatedly treated with cocaine. The activation of either dopamine D2 or CB1 receptors contributes to cocaine-induced DSI expression, decreased GABA synaptic efficacy, and hyperlocomotion. Next, in vivo pharmacological enhancement of 2AG signaling during repeated cocaine exposure occludes its actions both in vivo and ex vivo. This data extends our knowledge of the multifaceted sequelae imposed by this gene-environment interaction in VTA dopamine neurons of male pre-adolescent mice and contributes to our understanding of neural mechanisms of vulnerability for early onset cocaine use.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Estresse Fisiológico , Animais , Masculino , Camundongos , Fármacos do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Neurônios Dopaminérgicos , Endocanabinoides/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Área Tegmentar Ventral
4.
Brain Behav Immun ; 109: 271-284, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746342

RESUMO

Prenatal infections can increase the risk of developing psychiatric disorders such as schizophrenia in the offspring, especially when combined with other postnatal insults. Here, we tested, in a rat model of prenatal immune challenge by the viral mimic polyriboinosinic-polyribocytidilic acid, whether maternal immune activation (MIA) affects the endocannabinoid system and endocannabinoid-mediated modulation of dopamine functions. Experiments were performed during adolescence to assess i) the behavioral endophenotype (locomotor activity, plus maze, prepulse inhibition of startle reflex); ii) the locomotor activity in response to Δ9-Tetrahydrocannabinol (THC) and iii) the properties of ventral tegmental area (VTA) dopamine neurons in vivo and their response to THC; iv) endocannabinoid-mediated synaptic plasticity in VTA dopamine neurons; v) the expression of cannabinoid receptors and enzymes involved in endocannabinoid synthesis and catabolism in mesolimbic structures and vi) MIA-induced neuroinflammatory scenario evaluated by measurements of levels of cytokine and neuroinflammation markers. We revealed that MIA offspring displayed an altered locomotor activity in response to THC, a higher bursting activity of VTA dopamine neurons and a lack of response to cumulative doses of THC. Consistently, MIA adolescence offspring showed an enhanced 2-arachidonoylglycerol-mediated synaptic plasticity and decreased monoacylglycerol lipase activity in mesolimbic structures. Moreover, they displayed a higher expression of cyclooxygenase 2 (COX-2) and ionized calcium-binding adaptor molecule 1 (IBA-1), associated with latent inflammation and persistent microglia activity. In conclusion, we unveiled neurobiological mechanisms whereby inflammation caused by MIA influences the proper development of endocannabinoid signaling that negatively impacts the dopamine system, eventually leading to psychotic-like symptoms in adulthood.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Gravidez , Feminino , Ratos , Masculino , Animais , Humanos , Endocanabinoides/metabolismo , Dopamina/metabolismo , Transdução de Sinais , Neurônios Dopaminérgicos/metabolismo
5.
J Neuroendocrinol ; 35(2): e13240, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36810840

RESUMO

Sociocultural attitudes towards cannabis legalization contribute to the common misconception that it is a relatively safe drug and its use during pregnancy poses no risk to the fetus. However, longitudinal studies demonstrate that maternal cannabis exposure results in adverse outcomes in the offspring, with a heightened risk for developing psychopathology. One of the most reported psychiatric outcomes is the proneness to psychotic-like experiences during childhood. How exposure to cannabis during gestation increases psychosis susceptibility in children and adolescents remains elusive. Preclinical research has indicated that in utero exposure to the major psychoactive component of cannabis, delta-9-tetrahydrocannabinol (THC), deranges brain developmental trajectories towards vulnerable psychotic-like endophenotypes later in life. Here, we present how prenatal THC exposure (PCE) deregulates mesolimbic dopamine development predisposing the offspring to schizophrenia-relevant phenotypes, exclusively when exposed to environmental challenges, such as stress or THC. Detrimental effects of PCE are sex-specific because female offspring do not display psychotic-like outcomes upon exposure to these challenges. Moreover, we present how pregnenolone, a neurosteroid that showed beneficial properties on the effects elicited by cannabis intoxication, normalizes mesolimbic dopamine function and rescues psychotic-like phenotypes. We, therefore, suggest this neurosteroid as a safe "disease-modifying" aid to prevent the onset of psychoses in vulnerable individuals. Our findings corroborate clinical evidence and highlight the relevance of early diagnostic screening and preventative strategies for young individuals at risk for mental diseases, such as male PCE offspring.


Assuntos
Transtornos Mentais , Neuroesteroides , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Humanos , Gravidez , Masculino , Feminino , Pregnenolona , Dopamina
6.
Stroke ; 53(4): e176-e187, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35142225

RESUMO

Marijuana is perceived as a harmless drug, and its recreational use has gained popularity among young individuals. The concentration of active ingredients in recreational formulations has gradually increased over time, and high-potency illicit cannabinomimetics have become available. Thus, the consumption of cannabis in the general population is rising. Data from preclinical models demonstrate that cannabinoid receptors are expressed in high density in areas involved in cognition and behavior, particularly during periods of active neurodevelopment and maturation. In addition, growing evidence highlights the role of endogenous cannabinoid pathways in the regulation of neurotransmitter release, synaptic plasticity, and neurodevelopment. In animal models, exogenous cannabinoids disrupt these important processes and lead to cognitive and behavioral abnormalities. These data correlate with the higher risk of cognitive impairment reported in some observational studies done in humans. It is unclear whether the effect of cannabis on cognition reverts after abstinence. However, this evidence, along with the increased risk of stroke reported in marijuana users, raises concerns about its potential long-term effects on cognitive function. This scientific statement reviews the safety of cannabis use from the perspective of brain health, describes mechanistically how cannabis may cause cognitive dysfunction, and advocates for a more informed health care worker and consumer about the potential for cannabis to adversely affect the brain.


Assuntos
Canabinoides , Cannabis , American Heart Association , Animais , Encéfalo/metabolismo , Canabinoides/efeitos adversos , Cannabis/efeitos adversos , Cannabis/metabolismo , Endocanabinoides/metabolismo , Humanos
7.
Eur J Neurosci ; 55(4): 903-908, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35118747

RESUMO

The endocannabinoid system is widely expressed both in the brain and in the periphery. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands, and the enzymes involved in their metabolic processes. In the last few years, the development of new imaging and molecular tools has demonstrated that these receptors are distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular or molecular effects are differentially mediated by cannabinoid receptors according to their specific localization in different cell-types or in different subcellular locations. Moreover, the endocannabinoid system is also expressed throughout the body where it can serve to modulate the connection between the brain and the periphery. Finally, better understanding of the cannabinoid receptors structure and pharmacology has led researchers to propose interesting and new allosteric modulators of synaptic communication. The latest advances and innovative research in the cannabinoid field will provide new insights and better approaches to improve its interesting potential therapeutic profile. This special issue intends to bring together a series of empirical papers, targeted reviews and opinions from leaders in the field that will highlight the new advances in cannabinoid research.


Assuntos
Canabinoides , Endocanabinoides , Receptores de Canabinoides , Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/farmacologia , Moduladores de Receptores de Canabinoides/fisiologia , Canabinoides/metabolismo , Canabinoides/farmacologia , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais
8.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34681249

RESUMO

Common pathophysiological mechanisms have emerged for different neurological and neuropsychiatric conditions. In particular, mechanisms of oxidative stress, immuno-inflammation, and altered metabolic pathways converge and cause neuronal and non-neuronal maladaptative phenomena, which underlie multifaceted brain disorders. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors modulating, among others, anti-inflammatory and neuroprotective genes in diverse tissues. Both endogenous and synthetic PPAR agonists are approved treatments for metabolic and systemic disorders, such as diabetes, fatty liver disease, and dyslipidemia(s), showing high tolerability and safety profiles. Considering that some PPAR-acting drugs permeate through the blood-brain barrier, the possibility to extend their scope from the periphery to central nervous system has gained interest in recent years. Here, we review preclinical and clinical evidence that PPARs possibly exert a neuroprotective role, thereby providing a rationale for repurposing PPAR-targeting drugs to counteract several diseases affecting the central nervous system.

9.
J Neurosci ; 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34083258

RESUMO

Background: About 5 million people die from diseases related to nicotine addiction and tobacco use each year. Nicotine-induced increase of corticomesolimbic dopaminergic (DAergic) transmission and hypodopaminergic conditions occurring during abstinence are important for maintaining drug-use habits. Methods: We examined the notion of re-equilibrating DAergic transmission by inhibiting phosphodiesterase 7 (PDE7), an intracellular enzyme highly expressed in the corticomesolimbic circuitry and responsible for the degradation of cyclic adenosine monophosphate (cAMP), the main second messenger modulated by DA receptor activation. Results: Using selective PDE7 inhibitors, we demonstrated in male rats that systemic PDE7 enzyme inhibition reduced nicotine self-administration and prevented reinstatement to nicotine seeking evoked by cues or by the pharmacological stressor yohimbine. The effect was also observed by direct application of the PDE7 inhibitors into the nucleus accumbens (NAc) shell but not into the core. Inhibition of PDE7 resulted in increased DA- and cAMP-regulated neuronal phosphoprotein (DARPP-32) and cAMP response element-binding protein (CREB) and their phosphorylated forms in the NAc. It also enhanced the DA D1 receptor agonism-mediated effects, indicating potentiation of protein kinase A (PKA)-dependent transmission downstream of D1 receptor activation. In electrophysiological recordings from DA neurons in the lateral posterior ventral tegmental area (VTA), the PDE7 inhibitors attenuated the spontaneous activity of DA neurons. This effect was exerted through the potentiation of D1 receptor signaling and the subsequent facilitation of γ-aminobutyric acid (GABA) transmission. The PDE7 inhibitors did not elicit conditioned place preference and did not induce intravenous self-administration, indicating lack of reinforcing properties. Conclusions: PDE7 inhibitors have the potential to treat nicotine abuse.SIGNIFICANCE STATEMENTThe World Health Organization (WHO) estimates that there are 1.25 billion smokers worldwide, representing one third of the global population over the age of 15. Nicotine-induced increase of corticomesolimbic dopaminergic (DAergic) transmission and hypodopaminergic conditions occurring during abstinence are critical for maintaining drug-use habits. Here we demonstrate that nicotine consumption and relapse to nicotine seeking are attenuated by re-equilibrating DAergic transmission through inhibition of phosphodiesterase 7 (PDE7), an intracellular enzyme responsible for the degradation of cyclic adenosine monophosphate (cAMP), the main second messenger modulated by DA receptor activation. PDE7 inhibition may represent a novel treatment approach to aid smoking cessation.

10.
Neuropharmacology ; 189: 108537, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798546

RESUMO

Allosteric modulators of G protein coupled receptors (GPCRs), including GABABRs (GABABRs), are promising therapeutic candidates. While several positive allosteric modulators (PAM) of GABABRs have been characterized, only recently the first negative allosteric modulator (NAM) has been described. In the present study, we report the characterization of COR758, which acts as GABABR NAM in rat cortical membranes and CHO cells stably expressing GABABRs (CHO-GABAB). COR758 failed to displace the antagonist [3H]CGP54626 from the orthosteric binding site of GABABRs showing that it acts through an allosteric binding site. Docking studies revealed a possible new allosteric binding site for COR758 in the intrahelical pocket of the GABAB1 monomer. COR758 inhibited basal and GABABR-stimulated O-(3-[35Sthio)-triphosphate ([35S]GTPγS) binding in brain membranes and blocked the enhancement of GABABR-stimulated [35S]GTPγS binding by the PAM GS39783. Bioluminescent resonance energy transfer (BRET) measurements in CHO-GABAB cells showed that COR758 inhibited G protein activation by GABA and altered GABABR subunit rearrangements. Additionally, the compound altered GABABR-mediated signaling such as baclofen-induced inhibition of cAMP production in transfected HEK293 cells, agonist-induced Ca2+ mobilization as well as baclofen and the ago-PAM CGP7930 induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in CHO-GABAB cells. COR758 also prevented baclofen-induced outward currents recorded from rat dopamine neurons, substantiating its property as a NAM for GABABRs. Altogether, these data indicate that COR758 inhibits G protein signaling by GABABRs, likely by interacting with an allosteric binding-site. Therefore, COR758 might serve as a scaffold to develop additional NAMs for therapeutic intervention.


Assuntos
Moduladores GABAérgicos/química , Moduladores GABAérgicos/farmacologia , Antagonistas de Receptores de GABA-B/química , Antagonistas de Receptores de GABA-B/farmacologia , Receptores de GABA-B/fisiologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Agonistas dos Receptores de GABA-B/química , Agonistas dos Receptores de GABA-B/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/farmacologia
11.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562259

RESUMO

Cannabis use among pregnant women is increasing worldwide along with permissive sociocultural attitudes toward it. Prenatal cannabis exposure (PCE), however, is associated with adverse outcome among offspring, ranging from reduced birth weight to child psychopathology. We have previously shown that male rat offspring prenatally exposed to Δ9-tetrahydrocannabinol (THC), a rat model of PCE, exhibit extensive molecular, cellular, and synaptic changes in dopamine neurons of the ventral tegmental area (VTA), resulting in a susceptible mesolimbic dopamine system associated with a psychotic-like endophenotype. This phenotype only reveals itself upon a single exposure to THC in males but not females. Here, we characterized the impact of PCE on female behaviors and mesolimbic dopamine system function by combining in vivo single-unit extracellular recordings in anesthetized animals and ex vivo patch clamp recordings, along with neurochemical and behavioral analyses. We find that PCE female offspring do not show any spontaneous or THC-induced behavioral disease-relevant phenotypes. The THC-induced increase in dopamine levels in nucleus accumbens was reduced in PCE female offspring, even when VTA dopamine activity in vivo and ex vivo did not differ compared to control. These findings indicate that PCE impacts mesolimbic dopamine function and its related behavioral domains in a sex-dependent manner and warrant further investigations to decipher the mechanisms determining this sex-related protective effect from intrauterine THC exposure.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Dronabinol/toxicidade , Sistema Límbico/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Feminino , Alucinógenos/toxicidade , Sistema Límbico/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/patologia
12.
Curr Opin Pharmacol ; 56: 29-38, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33068883

RESUMO

Prolonged exposure to drugs of abuse leads to severe alterations in mesocorticolimbic dopamine circuitry deeply implicated in substance use disorders. Despite considerable efforts, few medications to reduce relapse rates are currently available. To solve this issue, researchers are uncovering therapeutic opportunities offered by the endocannabinoid system. The cannabinoid receptor type 1 (CB1R), and its endogenous ligands, participate in orchestration of cue-triggered and stress-triggered responses leading to obtain natural and drug rewards. Here, we review the evidence supporting the use of CB1R neutral antagonists, allosteric modulators, indirect agonists, as well as multi-target compounds, as improved alternatives compared to classical CB1R antagonists. The promising therapeutic value of other substrates participating in endocannabinoid signaling, like peroxisome proliferator-activated receptors, is also covered. Overall, a wide body of pre-clinical evidence avails novel pharmacological strategies interacting with the endocannabinoid system as clinically amenable candidates able to counteract drug-induced dopamine maladaptations contributing to increased risk of relapse.


Assuntos
Preparações Farmacêuticas , Transtornos Relacionados ao Uso de Substâncias , Endocanabinoides , Humanos , Ligantes , Recompensa , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle
13.
Artigo em Inglês | MEDLINE | ID: mdl-33031862

RESUMO

Cannabis is the illicit drug most widely used by pregnant women worldwide. Its growing acceptance and legalization have markedly increased the risks of child psychopathology, including psychotic-like experiences, which lowers the age of onset for a first psychotic episode. As the majority of patients with schizophrenia go through a premorbid condition long before this occurs, understanding neurobiological underpinnings of the prodromal stage of the disease is critical to improving illness trajectories and therapeutic outcomes. We have previously shown that male rat offspring prenatally exposed to Δ9-tetrahydrocannabinol (THC), a rat model of prenatal cannabinoid exposure (PCE), exhibit extensive molecular and synaptic changes in dopaminergic neurons of the ventral tegmental area (VTA), converging on a hyperdopaminergic state. This leads to a silent psychotic-like endophenotype that is unmasked by a single exposure to THC. Here, we further characterized the VTA dopamine neuron and sensorimotor gating functions of PCE rats exposed to acute stress or a challenge of the D2 receptor agonist apomorphine, by using in vivo single-unit extracellular recordings and Prepulse Inhibition (PPI) analyses. At pre-puberty, PCE male rat offspring display a reduced population activity of VTA dopamine neurons in vivo, the majority of which are tonically active. PCE male progeny also exhibit enhanced sensitivity to dopamine D2 (DAD2) receptor activation and a vulnerability to acute stress, which is associated with compromised sensorimotor gating functions. This data extends our knowledge of the multifaceted sequelae imposed by PCE in the mesolimbic dopamine system of male pre-adolescent rats, which renders a neural substrate highly susceptible to subsequent challenges that may trigger psychotic-like outcomes.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Dronabinol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Feminino , Masculino , Núcleo Accumbens/metabolismo , Gravidez , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
14.
Addict Biol ; 26(3): e12967, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33021007

RESUMO

Physical exercise, which can be addictogenic on its own, is considered a therapeutic alternative for drug craving. Exercise might thus share with drugs the ability to strengthen excitatory synapses onto ventral tegmental area (VTA) dopaminergic neurones, as assessed by the ratio of AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents (EPSCs) to NMDA receptor (NMDAR)-mediated EPSCs. As did acute cocaine, amphetamine, or Δ9 -tetrahydrocannabinol (THC) pretreatments, an acute 1-h wheel-running session increased the AMPAR/NMDAR ratio in VTA dopaminergic neurones. To dissect the respective influences of wheel-running seeking and performance, mice went through an operant protocol wherein wheel-running was conditioned by nose poking under fixed ratio schedules of reinforcement. Conditioned wheel-running increased the AMPAR/NMDAR ratio to a higher extent than free wheel-running, doing so although running performance was lower in the former paradigm than in the latter. Thus, the cue-reward association, rather than reward consumption, played a major role in this increase. The AMPAR/NMDAR ratio returned to baseline levels in mice that had extinguished the cued-running motivated task, but it increased after a cue-induced reinstatement session. The amplitude of this increase correlated with the intensity of exercise craving, as assessed by individual nose poke scores. Finally, cue-induced reinstatement of running seeking proved insensitive to acute cocaine or THC pretreatments. Our study reveals for the first time that the drive for exercise bears synaptic influences on VTA dopaminergic neurones which are reminiscent of drug actions. Whether these influences play a role in the therapeutic effects of exercise in human drug craving remains to be established.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Anfetamina/administração & dosagem , Animais , Fissura/efeitos dos fármacos , Sinais (Psicologia) , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/fisiologia , Dronabinol/administração & dosagem , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reforço Psicológico , Recompensa , Sinapses/metabolismo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia
15.
Front Behav Neurosci ; 14: 72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581736

RESUMO

Despite great efforts to warn pregnant women that drugs of abuse impact development of the embryo and the fetus, the use of legal and illegal drugs by childbearing women is still a major public health concern. In parallel with well-established teratogenic effects elicited by some drugs of abuse, epidemiological studies show that certain psychoactive substances do not induce birth defects but lead to subtle neurobehavioral alterations in the offspring that manifest as early as during infancy. Although gender differences in offspring susceptibility have not been fully investigated, a number of longitudinal studies indicate that male and female progeny exposed in utero to drugs of abuse show different vulnerabilities to deleterious effects of these substances in cognitive, executive, and behavioral domains. Here, we briefly review the existing literature focusing on gender differences in the neurobehavioral consequences of maternal exposure to drugs of abuse. Overall, the data strongly indicate that male exposed progeny are more susceptible than female to dysfunctions in cognitive processing and emotional regulation. However, insights into the mechanisms determining this natural phenomenon are not currently available. Our analysis prompts future investigations to implement clinical studies including the influence of gender/sex as a biological variable in the outcome of offspring prenatally exposed to drugs of abuse.

16.
Front Pharmacol ; 11: 587140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505308

RESUMO

Fatty acids play a crucial role in the brain as specific receptor ligands and as precursors of bioactive metabolites. Conjugated linoleic acid (CLA), a group of positional and geometric isomers of linoleic acid (LA, 18:2 n-6) present in meat and dairy products of ruminants and synthesized endogenously in non-ruminants and humans, has been shown to possess different nutritional properties associated with health benefits. Its ability to bind to peroxisome proliferator-activated receptor (PPAR) α, a nuclear receptor key regulator of fatty acid metabolism and inflammatory responses, partly mediates these beneficial effects. CLA is incorporated and metabolized into brain tissue where induces the biosynthesis of endogenous PPARα ligands palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), likely through a positive feedback mechanism where PPARα activation sustains its own cellular effects through ligand biosynthesis. In addition to PPARα, PEA and OEA may as well bind to other receptors such as TRPV1, further extending CLA own anti-neuroinflammatory actions. Future studies are needed to investigate whether dietary CLA may exert anti-inflammatory activity, particularly in the setting of neurodegenerative diseases and neuropsychiatric disorders with a neuroinflammatory basis.

17.
Addict Biol ; 25(5): e12803, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31342609

RESUMO

Smoking during adolescence may increase the likelihood to develop nicotine dependence and to abuse other drugs such as cocaine. Despite great efforts to understand underlying neurobiological mechanisms of this progression, less attention has been paid to the role of genetic factors. Here, we investigated the influence of both genetic background and age at first nicotine exposure in the long-lasting effects on mesolimbic dopamine transmission including the increased cocaine-rewarding effect. Mid-adolescent and adult rats of inbred strains Lewis (addiction prone) and Fischer 344 (addiction resistant) were administered nicotine (0.4 mg/kg) or vehicle once daily for 5 days. Changes in dopamine transmission were investigated by in vivo microdialysis and electrophysiology after 30 days of withdrawal, whereas changes in cocaine-rewarding effect were assessed via conditioned place preference paradigm. Nicotine pre-exposure differentially changed mesolimbic dopamine transmission depending on strain and age of pre-exposure. A potentiation of dopamine response to nicotine was observed in nucleus accumbens (NAc) core of both strains and age groups, whereas dopamine response in NAc shell was enhanced exclusively in Lewis rats exposed to nicotine during adolescence. A similar response was observed following cocaine challenge at adulthood. Changes in VTA dopamine cell population and activity were observed only in adolescent nicotine-pretreated Lewis rats, which also showed an increased cocaine-rewarding effect at adulthood. These results highlight the influence of genetic background in the long-lasting effects of nicotine exposure and suggest that exposure during adolescence might increase nicotine and cocaine-rewarding properties in genetically vulnerable individuals, thereby facilitating progression toward dependence.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Dopamina/metabolismo , Patrimônio Genético , Nicotina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Fatores Etários , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Masculino , Microdiálise , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew
18.
Nat Neurosci ; 22(12): 1975-1985, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611707

RESUMO

The increased legal availability of cannabis has led to a common misconception that it is a safe natural remedy for, among others, pregnancy-related ailments such as morning sickness. Emerging clinical evidence, however, indicates that prenatal cannabis exposure (PCE) predisposes offspring to various neuropsychiatric disorders linked to aberrant dopaminergic function. Yet, our knowledge of how cannabis exposure affects the maturation of this neuromodulatory system remains limited. Here, we show that male, but not female, offspring of Δ9-tetrahydrocannabinol (THC)-exposed dams, a rat PCE model, exhibit extensive molecular and synaptic changes in dopaminergic neurons of the ventral tegmental area, including altered excitatory-to-inhibitory balance and switched polarity of long-term synaptic plasticity. The resulting hyperdopaminergic state leads to increased behavioral sensitivity to acute THC exposure during pre-adolescence. The neurosteroid pregnenolone, a US Food and Drug Administration (FDA) approved drug, rescues synaptic defects and normalizes dopaminergic activity and behavior in PCE offspring, thus suggesting a therapeutic approach for offspring exposed to cannabis during pregnancy.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Dronabinol/efeitos adversos , Dronabinol/farmacologia , Pregnenolona/farmacologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Dronabinol/antagonistas & inibidores , Endofenótipos , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Atividade Motora/efeitos dos fármacos , Inibição Neural/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Gravidez , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , Ratos , Assunção de Riscos , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/fisiologia , Caracteres Sexuais , Área Tegmentar Ventral/metabolismo
19.
J Neurosci ; 39(42): 8250-8258, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619494

RESUMO

The recent shift in sociopolitical debates and growing liberalization of cannabis use across the globe has raised concern regarding its impact on vulnerable populations, such as pregnant women and adolescents. Epidemiological studies have long demonstrated a relationship between developmental cannabis exposure and later mental health symptoms. This relationship is especially strong in people with particular genetic polymorphisms, suggesting that cannabis use interacts with genotype to increase mental health risk. Seminal animal research directly linked prenatal and adolescent exposure to delta-9-tetrahydrocannabinol, the major psychoactive component of cannabis, with protracted effects on adult neural systems relevant to psychiatric and substance use disorders. In this article, we discuss some recent advances in understanding the long-term molecular, epigenetic, electrophysiological, and behavioral consequences of prenatal, perinatal, and adolescent exposure to cannabis/delta-9-tetrahydrocannabinol. Insights are provided from both animal and human studies, including in vivo neuroimaging strategies.


Assuntos
Cannabis/efeitos adversos , Cognição/fisiologia , Uso da Maconha/efeitos adversos , Transtornos Mentais/etiologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Adolescente , Animais , Feminino , Humanos , Transtornos Mentais/psicologia , Gravidez
20.
Trends Neurosci ; 42(12): 871-884, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31604585

RESUMO

Cannabis exposure during the perinatal period results in varied and significant consequences in affected offspring. The prevalence of detrimental outcomes of perinatal cannabis exposure is likely to increase in tandem with the broadening of legalization and acceptance of the drug. As such, it is crucial to highlight the immediate and protracted consequences of cannabis exposure on pre- and postnatal development. Here, we identify lasting changes in neurons' learning flexibility (synaptic plasticity) and epigenetic misregulation in animal models of perinatal cannabinoid exposure (using synthetic cannabinoids or active components of the cannabis plant), in addition to significant alterations in social behavior and executive functions. These findings are supported by epidemiological data indicating similar behavioral outcomes throughout life in human offspring exposed to cannabis during pregnancy. Further, we indicate important lingering questions regarding accurate modeling of perinatal cannabis exposure as well as the need for sex- and age-dependent outcome measures in future studies.


Assuntos
Encéfalo/efeitos dos fármacos , Cannabis/efeitos adversos , Neurônios/efeitos dos fármacos , Lesões Pré-Natais/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/fisiologia , Endocanabinoides/fisiologia , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/fisiologia , Gravidez , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...