Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hypertens ; 2021: 4808657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868673

RESUMO

The aim of our study is to investigate the sympathetic output and baroreflex via renal sympathetic nerve activity (RSNA) recording in a model of severe hypertension which exhibits arterial, cardiac, and renal damages, the spontaneously hypertensive rat (SHR) under lowered NO bioavailability. SHR are treated from 18 to 20 weeks of age with a low dose of L-NAME, a NO synthase inhibitor, in drinking water (SHRLN) and compared to SHR and normotensive Wistar Kyoto (WKY) rats. After the two-week treatment, rats are anesthetized for RSNA, mean blood pressure (MBP), and heart rate (HR) recording. MBP is higher in SHR than in WKY and higher in SHRLN than in SHR. Compared to WKY, SHR displays an alteration in the baroreflex with a displacement of the sympathoinhibition curve to highest pressures; this displacement is greater in SHRLN rats. The bradycardic response is reduced in SHRLN compared to both SHR and WKY. In hypertensive rats, SHR and SHRLN, basal RSNA is modified, the maximal amplitude of burst is reduced, but minimal values are increased, indicating an increased basal RSNA with reduced bursting activity. The temporal correlation between RSNA and HR is preserved in SHR but altered in 10 SHRLN out of 10. The RSNA inhibition triggered by the Bezold-Jarisch reflex activation is not modified in hypertensive rats, SHR or SHRLN, in contrast to that triggered by the baroreflex. Histological analysis of the carotid bifurcation does not reveal any abnormality in SHRLN at the level of the carotid sinus. In conclusion, data indicate that the sympathetic outflow is altered in SHRLN with a strong reduction of the baroreflex sympathoinhibition and suggest that its central pathway is not involved. These additional results on SHRLN also confirm the usefulness of this model of severe hypertension with multiple target organ damages.

2.
J Mol Cell Cardiol ; 131: 155-163, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31051181

RESUMO

The mechanical and cellular relationships between systole and diastole during left ventricular (LV) dysfunction remain to be established. LV contraction-relaxation coupling was examined during LV hypertrophy induced by chronic hypertension. Chronically instrumented pigs received angiotensin II infusion for4weeks to induce chronic hypertension (133 ±â€¯7 mmHg vs 98 ±â€¯5 mmHg for mean arterial pressure at Day 28 vs 0, respectively) and LV hypertrophy. LV function was investigated with the instrumentation and echocardiography for LV twist-untwist assessment before and after dobutamine infusion. The cellular mechanisms were investigated by exploring the intracellular Ca2+ handling. At Day 28, pigs exhibited LV hypertrophy with LV diastolic dysfunction (impaired LV isovolumic relaxation, increased LV end-diastolic pressure, decreased and delayed LV untwisting rate) and LV systolic dysfunction (impaired LV isovolumic contraction and twist) although LV ejection fraction was preserved. Isolated cardiomyocytes exhibited altered shortening and lengthening. Interestingly, contraction-relaxation coupling remained preserved both in vivo and in vitro during LV hypertrophy. LV systolic and diastolic dysfunctions were associated to post-translational remodeling and dysfunction of the type 2 cardiac ryanodine receptor/Ca2+ release channel (RyR2), i.e., PKA hyperphosphorylation of RyR2, depletion of calstabin 2 (FKBP12.6), RyR2 leak and hypersensitivity of RyR2 to cytosolic Ca2+ during both contraction and relaxation phases. In conclusion, LV contraction-relaxation coupling remained preserved during chronic hypertension despite LV systolic and diastolic dysfunctions. This implies that LV diastolic dysfunction is accompanied by LV systolic dysfunction. At the cellular level, this is linked to sarcoplasmic reticulum Ca2+ leak through PKA-mediated RyR2 hyperphosphorylation and depletion of its stabilizing partner.


Assuntos
Diástole/fisiologia , Hipertensão/fisiopatologia , Sístole/fisiologia , Animais , Western Blotting , Ecocardiografia , Frequência Cardíaca/fisiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Imunoprecipitação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Suínos , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/fisiologia
3.
Int J Cardiol ; 252: 175-180, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196088

RESUMO

BACKGROUND: Left ventricular (LV) dysfunction develops during LV hypertrophy and particularly during tachycardia. Thus we investigated the effects of heart rate (HR) reduction with ivabradine, an If-channel blocker, on LV twist and untwist which represents myocardial deformation occurring during the overall systole and diastole and therefore provide valuable evaluation of global LV systolic and diastolic function. METHODS: Eight chronically instrumented pigs receiving continuous angiotensin II infusion during 28days to induce chronic hypertension and LV hypertrophy. Measurements were performed at Days 0 and 28 after stopping angiotensin II infusion in the presence and absence of ivabradine. RESULTS: At Day 0, reducing HR from 75±3 to 55±2beats/min with ivabradine did not affect LV twist but slowed LV untwist along with an increase in LV end-diastolic pressure. At Day 28, LV posterior and septal wall thickness as well as the estimated LV mass increased, indicating LV hypertrophy. LV twist and untwist were significantly reduced by 33±4% from 16±1° and 32±6% from -154±9°/s, respectively, showing global LV systolic and diastolic dysfunction. In this context, ivabradine decreased HR by 25% from 86±5beats/min and significantly improved LV twist from 11±1 to 14±1° and LV untwist from -104±8 to -146±5°/s. CONCLUSIONS: Administration of ivabradine during chronic hypertension and LV hypertrophy improved LV twist and untwist. This further supports the beneficial effect of this drug on both LV systolic and diastolic function during the development of LV hypertrophy.


Assuntos
Benzazepinas/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Hipertensão/tratamento farmacológico , Disfunção Ventricular Esquerda/tratamento farmacológico , Animais , Doença Crônica , Feminino , Hipertensão/complicações , Hipertensão/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Ivabradina , Suínos , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/diagnóstico por imagem
4.
Circ J ; 81(12): 1749-1757, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29070758

RESUMO

Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice and is associated with morbidity and mortality. Over the past 2 decades, there have been major advances in understanding AF pathophysiology, but important knowledge gaps, particularly about targetable basic mechanisms, remain. Recent metabolomic and proteomic studies have shown changes in the expression of molecules involved in metabolic pathways in human and experimental AF, indicating a role for metabolic alterations in AF pathophysiology. AF is characterized by irregular high-frequency excitation and contraction that affect atrial energy demands, circulation and oxygen supply, and change the balance between metabolic demand and supply, causing metabolic stress. Here, we review the information available about AF-induced metabolic changes and their pathophysiological contribution. We also discuss the possibilities of developing novel therapeutic strategies that act by modulating cardiac metabolic processes during AF.


Assuntos
Fibrilação Atrial/metabolismo , Animais , Fibrilação Atrial/fisiopatologia , Humanos , Redes e Vias Metabólicas/genética , Metabolômica , Proteômica
5.
Basic Res Cardiol ; 111(3): 30, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27040115

RESUMO

Chronic hypertension is associated with left ventricular (LV) hypertrophy and LV diastolic dysfunction with impaired isovolumic relaxation and abnormal LV filling. Increased heart rate (HR) worsens these alterations. We investigated whether the I f channel blocker ivabradine exerts beneficial effects on LV filling dynamic. In this setting, we also evaluated the relationship between LV filling and isovolumic contraction as a consequence of contraction-relaxation coupling. Therefore, hypertension was induced by a continuous infusion of angiotensin II during 28 days in 10 chronically instrumented pigs. LV function was investigated after stopping angiotensin II infusion to offset the changes in loading conditions. In the normal heart, LV relaxation filling, LV early filling, LV peak early filling rate were positively correlated to HR. In contrast, these parameters were significantly reduced at day 28 vs. day 0 (18, 42, and 26 %, respectively) despite the increase in HR (108 ± 6 beats/min vs. 73 ± 2 beats/min, respectively). These abnormalities were corrected by acute administration of ivabradine (1 mg/kg, iv). Ivabradine still exerted these effects when HR was controlled at 150 beats/min by atrial pacing. Interestingly, LV relaxation filling, LV early filling and LV peak early filling were strongly correlated with both isovolumic contraction and relaxation. In conclusion, ivabradine improves LV filling during chronic hypertension. The mechanism involves LV contraction-relaxation coupling through normalization of isovolumic contraction and relaxation as well as HR-independent mechanisms.


Assuntos
Benzazepinas/farmacologia , Fármacos Cardiovasculares/farmacologia , Hipertensão/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Ivabradina , Suínos , Função Ventricular Esquerda/fisiologia
6.
Cardiovasc Res ; 109(4): 467-79, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26705366

RESUMO

Atrial fibrillation (AF) is an extremely common clinical problem associated with increased morbidity and mortality. Current antiarrhythmic options include pharmacological, ablation, and surgical therapies, and have significantly improved clinical outcomes. However, their efficacy remains suboptimal, and their use is limited by a variety of potentially serious adverse effects. There is a clear need for improved therapeutic options. Several decades of research have substantially expanded our understanding of the basic mechanisms of AF. Ectopic firing and re-entrant activity have been identified as the predominant mechanisms for arrhythmia initiation and maintenance. However, it has become clear that the clinical factors predisposing to AF and the cellular and molecular mechanisms involved are extremely complex. Moreover, all AF-promoting and maintaining mechanisms are dynamically regulated and subject to remodelling caused by both AF and cardiovascular disease. Accordingly, the initial presentation and clinical progression of AF patients are enormously heterogeneous. An understanding of arrhythmia mechanisms is widely assumed to be the basis of therapeutic innovation, but while this assumption seems self-evident, we are not aware of any papers that have critically examined the practical contributions of basic research into AF mechanisms to arrhythmia management. Here, we review recent insights into the basic mechanisms of AF, critically analyse the role of basic research insights in the development of presently used anti-AF therapeutic options and assess the potential value of contemporary experimental discoveries for future therapeutic innovation. Finally, we highlight some of the important challenges to the translation of basic science findings to clinical application.


Assuntos
Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Sistema de Condução Cardíaco/efeitos dos fármacos , Pesquisa , Animais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Progressão da Doença , Eletrofisiologia/métodos , Sistema de Condução Cardíaco/fisiopatologia , Humanos
7.
Hypertension ; 65(1): 122-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25350985

RESUMO

During chronic hypertension, increases in heart rate (HR) or adrenergic stimulation are associated with maladaptive left ventricular responses as isovolumic contraction and relaxation durations failed to reduce, impeding filling. We, therefore, investigated the effects of acute selective HR reduction with ivabradine on left ventricular dysfunction during chronic hypertension. Accordingly, chronically instrumented pigs received angiotensin II infusion during 4 weeks to induce chronic hypertension. Left ventricular function was investigated while angiotensin II infusion was stopped. A single intravenous dose of ivabradine was administered at days 0 and 28. Dobutamine infusion was also performed. HR was increased at day 28 versus day 0. Paradoxically, both isovolumic contraction and relaxation times failed to reduce and remained unchanged (57±3 versus 58±3 ms and 74±3 versus 70±3 at day 28 versus day 0, respectively). At day 28, ivabradine significantly reduced HR by 27%. Concomitantly, abnormal ventricular responses were corrected because both isovolumic contraction and relaxation times were significantly reduced while filling time was improved. Similarly at day 28, maladaptive responses of isovolumic contraction and relaxation to dobutamine were no longer observed during HR reduction with ivabradine. Correction of HR reduction with pacing showed that non-HR-related mechanisms also participated to these beneficial effects. In this model of chronic hypertension and left ventricular hypertrophy, acute HR reduction with ivabradine corrects the maladaptive responses of cardiac cycle phases by restoring a normal profile for isovolumic contraction and relaxation both at rest and under adrenergic stimuli, ultimately favoring filling.


Assuntos
Benzazepinas/uso terapêutico , Ventrículos do Coração/fisiopatologia , Hipertensão/tratamento farmacológico , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/fisiologia , Animais , Estado de Consciência , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Modelos Animais de Doenças , Feminino , Ventrículos do Coração/efeitos dos fármacos , Hipertensão/fisiopatologia , Ivabradina , Suínos , Resultado do Tratamento
8.
Basic Res Cardiol ; 107(6): 298, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961595

RESUMO

Systolic function is often evaluated by measuring ejection fraction and its preservation is often assimilated with the lack of impairment of systolic left ventricular (LV) function. Considering the left ventricle as a muscular pump, we explored LV function during chronic hypertension independently of increased afterload conditions. Fourteen conscious and chronically instrumented pigs received continuous infusion of either angiotensin II (n = 8) or saline (n = 6) during 28 days. Hemodynamic recordings were regularly performed in the presence and 1 h after stopping angiotensin II infusion to evaluate intrinsic LV function. Throughout the protocol, the mean arterial pressure steadily increased by 55 ± 4 mmHg in angiotensin II-treated animals. There were no significant changes in stroke volume, LV fractional shortening or LV wall thickening, indicating the lack of alterations in LV ejection. In contrast, we observed maladaptive changes with (1) the lack of reduction in isovolumic contraction and relaxation durations with heart rate increases, (2) abnormally blunted isovolumic contraction and relaxation responses to dobutamine and (3) a linear correlation between isovolumic contraction and relaxation durations. None of these changes were observed in saline-infused animals. In conclusion, we provide evidence of impaired LV function with concomitant isovolumic contraction and relaxation abnormalities during chronic hypertension while ejection remains preserved and no sign of heart failure is present. The evaluation under unloaded conditions shows intrinsic LV abnormalities.


Assuntos
Hipertensão/fisiopatologia , Função Ventricular Esquerda , Angiotensina II , Animais , Diástole , Feminino , Hemodinâmica , Hipertrofia Ventricular Esquerda/induzido quimicamente , Contração Miocárdica , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...