Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(30): 17551-17557, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32647062

RESUMO

The rational creation of two-component conjugated polymer systems with high levels of phase purity in each component is challenging but crucial for realizing printed soft-matter electronics. Here, we report a mixed-flow microfluidic printing (MFMP) approach for two-component π-polymer systems that significantly elevates phase purity in bulk-heterojunction solar cells and thin-film transistors. MFMP integrates laminar and extensional flows using a specially microstructured shear blade, designed with fluid flow simulation tools to tune the flow patterns and induce shear, stretch, and pushout effects. This optimizes polymer conformation and semiconducting blend order as assessed by atomic force microscopy (AFM), transmission electron microscopy (TEM), grazing incidence wide-angle X-ray scattering (GIWAXS), resonant soft X-ray scattering (R-SoXS), photovoltaic response, and field effect mobility. For printed all-polymer (poly[(5,6-difluoro-2-octyl-2H-benzotriazole-4,7-diyl)-2,5-thiophenediyl[4,8-bis[5-(2-hexyldecyl)-2-thienyl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl]-2,5-thiophenediyl]) [J51]:(poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)}) [N2200]) solar cells, this approach enhances short-circuit currents and fill factors, with power conversion efficiency increasing from 5.20% for conventional blade coating to 7.80% for MFMP. Moreover, the performance of mixed polymer ambipolar [poly(3-hexylthiophene-2,5-diyl) (P3HT):N2200] and semiconducting:insulating polymer unipolar (N2200:polystyrene) transistors is similarly enhanced, underscoring versatility for two-component π-polymer systems. Mixed-flow designs offer modalities for achieving high-performance organic optoelectronics via innovative printing methodologies.

2.
J Am Chem Soc ; 141(34): 13410-13420, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31379156

RESUMO

Achieving efficient polymer solar cells (PSCs) requires a structurally optimal donor-acceptor heterojunction morphology. Here we report the combined experimental and theoretical characterization of a benzodithiophene-benzothiadiazole donor polymer series (PBTZF4-R; R = alkyl substituent) blended with the non-fullerene acceptor ITIC-Th and analyze the effects of substituent dimensions on blend morphology, charge transport, carrier dynamics, and PSC metrics. Varying substituent dimensions has a pronounced effect on the blend morphology with a direct link between domain purity, to some extent domain dimensions, and charge generation and collection. The polymer with the smallest alkyl substituent yields the highest PSC power conversion efficiency (PCE, 11%), reflecting relatively small, high-purity domains and possibly benefiting from "matched" donor polymer-small molecule acceptor orientations. The distinctive morphologies arising from the substituents are investigated using molecular dynamics (MD) simulations which reveal that substituent dimensions dictate a well-defined set of polymer conformations, in turn driving chain aggregation and, ultimately, the various film morphologies and mixing with acceptor small molecules. A straightforward energetic parameter explains the experimental polymer domain morphological trends, hence PCE, and suggests strategies for substituent selection to optimize PSC materials morphologies.

3.
J Am Chem Soc ; 141(7): 3274-3287, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30672702

RESUMO

Indacenodithienothiophene (IDTT)-based postfullerene electron acceptors, such as ITIC (2,2'-[[6,6,12,12-tetrakis(4-hexylphenyl)-6,12-dihydrodithieno[2,3- d:2',3'- d']-s-indaceno[1,2- b:5,6- b']dithiophene-2,8-diyl]-bis[methylidyne(3-oxo-1 H-indene-2,1(3 H)-diylidene)]]bis[propanedinitrile]), have become synonymous with high power conversion efficiencies (PCEs) in bulk heterojunction (BHJ) polymer solar cells (PSCs). Here we systematically investigate the influence of end-group fluorination density and positioning on the physicochemical properties, single-crystal packing, end-group redistribution propensity, and BHJ photovoltaic performance of a series of ITIC variants, ITIC- nF ( n = 0, 2, 3, 4, and 6). Increasing n from 0 → 6 contracts the optical bandgap, but only marginally lowers the LUMO for n > 4. This yields enhanced photovoltaic short-circuit current density and good open-circuit voltage, so that ITIC-6F achieves the highest PCE of the series, approaching 12% in blends with the PBDB-TF donor polymer. Single-crystal diffraction reveals that the ITIC- nF molecules cofacially interleave with ITIC-6F having the shortest π-π distance of 3.28 Å. This feature together with ZINDO-level computed intermolecular electronic coupling integrals as high as 57 meV, and B3LYP/DZP-level reorganization energies as low as 147 meV, rival or surpass the corresponding values for fullerenes, ITIC-0F, and ITIC-4F, and track a positive correlation between the ITIC- nF space-charge limited electron mobility and n. Finally, a heretofore unrecognized solution-phase redistribution process between the 2-(3-oxo-indan-1-ylidene)-malononitrile-derived end-groups (EGs) of IDTT-based NFAs, i.e., EG1-IDTT-EG1 + EG2-IDTT-EG2 ⇌ 2 EG1-IDTT-EG2, with implications for the entire ITIC PSC field, is identified and mechanistically characterized, and the effects on PSC performance are assessed.

4.
Angew Chem Int Ed Engl ; 58(13): 4129-4142, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30395372

RESUMO

For over two decades bulk-heterojunction polymer solar cell (BHJ-PSC) research was dominated by donor:acceptor BHJ blends based on polymer donors and fullerene molecular acceptors. This situation has changed recently, with non-fullerene PSCs developing very rapidly. The power conversion efficiencies of non-fullerene PSCs have now reached over 15 %, which is far above the most efficient fullerene-based PSCs. Among the various non-fullerene PSCs, all-polymer solar cells (APSCs) based on polymer donor-polymer acceptor BHJs have attracted growing attention, due to the following attractions: 1) large and tunable light absorption of the polymer donor/polymer acceptor pair; 2) robustness of the BHJ film morphology; 3) compatibility with large scale/large area manufacturing; 4) long-term stability of the cell to external environmental and mechanical stresses. This Minireview highlights the opportunities offered by APSCs, selected polymer families suitable for these devices with optimization to enhance the performance further, and discusses the challenges facing APSC development for commercial applications.

5.
Proc Natl Acad Sci U S A ; 116(1): 58-66, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30563858

RESUMO

In the fast-evolving field of halide perovskite semiconductors, the 2D perovskites (A')2(A) n-1M n X3n+1 [where A = Cs+, CH3NH3+, HC(NH2)2+; A' = ammonium cation acting as spacer; M = Ge2+, Sn2+, Pb2+; and X = Cl-, Br-, I-] have recently made a critical entry. The n value defines the thickness of the 2D layers, which controls the optical and electronic properties. The 2D perovskites have demonstrated preliminary optoelectronic device lifetime superior to their 3D counterparts. They have also attracted fundamental interest as solution-processed quantum wells with structural and physical properties tunable via chemical composition, notably by the n value defining the perovskite layer thickness. The higher members (n > 5) have not been documented, and there are important scientific questions underlying fundamental limits for n To develop and utilize these materials in technology, it is imperative to understand their thermodynamic stability, fundamental synthetic limitations, and the derived structure-function relationships. We report the effective synthesis of the highest iodide n-members yet, namely (CH3(CH2)2NH3)2(CH3NH3)5Pb6I19 (n = 6) and (CH3(CH2)2NH3)2(CH3NH3)6Pb7I22 (n = 7), and confirm the crystal structure with single-crystal X-ray diffraction, and provide indirect evidence for "(CH3(CH2)2NH3)2(CH3NH3)8Pb9I28" ("n = 9"). Direct HCl solution calorimetric measurements show the compounds with n > 7 have unfavorable enthalpies of formation (ΔHf), suggesting the formation of higher homologs to be challenging. Finally, we report preliminary n-dependent solar cell efficiency in the range of 9-12.6% in these higher n-members, highlighting the strong promise of these materials for high-performance devices.

6.
Proc Natl Acad Sci U S A ; 115(36): E8341-E8348, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127011

RESUMO

New organic semiconductors are essential for developing inexpensive, high-efficiency, solution-processable polymer solar cells (PSCs). PSC photoactive layers are typically fabricated by film-casting a donor polymer and a fullerene acceptor blend, with ensuing solvent evaporation and phase separation creating discrete conduits for photogenerated holes and electrons. Until recently, n-type fullerene acceptors dominated the PSC literature; however, indacenodithienothiophene (IDTT)-based acceptors have recently enabled remarkable PSC performance metrics, for reasons that are not entirely obvious. We report two isomeric IDTT-based acceptors 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-benz-(5, 6)indanone))-5,5,11,11-tetrakis(4-nonylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']di-thiophene (ITN-C9) and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-benz(6,7)indanone))-5,5,11,11-tetrakis(4-nonylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITzN-C9) that shed light on the exceptional IDTT properties vis-à-vis fullerenes. The neat acceptors and blends with fluoropolymer donor poly{[4,8-bis[5-(2- ethylhexyl)-4-fluoro-2-thienyl]benzo[1,2-b:4,5-b']dithiophene2,6-diyl]-alt-[2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo4H,8H-benzo[1,2-c:4,5-c']dithiophene-1,3-diyl]]} (PBDB-TF) are investigated by optical spectroscopy, cyclic voltammetry, thermogravimetric analysis, differential scanning calorimetry, single-crystal X-ray diffraction, photovoltaic response, space-charge-limited current transport, atomic force microscopy, grazing incidence wide-angle X-ray scattering, and density functional theory-level quantum chemical analysis. The data reveal that ITN-C9 and ITzN-C9 organize such that the lowest unoccupied molecular orbital-rich end groups have intermolecular π-π distances as close as 3.31(1) Å, with electronic coupling integrals as large as 38 meV, and internal reorganization energies as small as 0.133 eV, comparable to or superior to those in fullerenes. ITN-C9 and ITzN-C9 have broad solar-relevant optical absorption, and, when blended with PBDB-TF, afford devices with power conversion efficiencies near 10%. Performance differences between ITN-C9 and ITzN-C9 are understandable in terms of molecular and electronic structure distinctions via the influences on molecular packing and orientation with respect to the electrode.

7.
Adv Mater ; 30(3)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29205525

RESUMO

Bulk-heterojunction organic photovoltaic materials containing nonfullerene acceptors (NFAs) have seen remarkable advances in the past year, finally surpassing fullerenes in performance. Indeed, acceptors based on indacenodithiophene (IDT) have become synonymous with high power conversion efficiencies (PCEs). Nevertheless, NFAs have yet to achieve fill factors (FFs) comparable to those of the highest-performing fullerene-based materials. To address this seeming anomaly, this study examines a high efficiency IDT-based acceptor, ITIC, paired with three donor polymers known to achieve high FFs with fullerenes, PTPD3T, PBTI3T, and PBTSA3T. Excellent PCEs up to 8.43% are achieved from PTPD3T:ITIC blends, reflecting good charge transport, optimal morphology, and efficient ITIC to PTPD3T hole-transfer, as observed by femtosecond transient absorption spectroscopy. Hole-transfer is observed from ITIC to PBTI3T and PBTSA3T, but less efficiently, reflecting measurably inferior morphology and nonoptimal energy level alignment, resulting in PCEs of 5.34% and 4.65%, respectively. This work demonstrates the importance of proper morphology and kinetics of ITIC → donor polymer hole-transfer in boosting the performance of polymer:ITIC photovoltaic bulk heterojunction blends.

8.
Proc Natl Acad Sci U S A ; 114(47): E10066-E10073, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109282

RESUMO

Shear-printing is a promising processing technique in organic electronics for microstructure/charge transport modification and large-area film fabrication. Nevertheless, the mechanism by which shear-printing can enhance charge transport is not well-understood. In this study, a printing method using natural brushes is adopted as an informative tool to realize direct aggregation control of conjugated polymers and to investigate the interplay between printing parameters, macromolecule backbone alignment and aggregation, and charge transport anisotropy in a conjugated polymer series differing in architecture and electronic structure. This series includes (i) semicrystalline hole-transporting P3HT, (ii) semicrystalline electron-transporting N2200, (iii) low-crystallinity hole-transporting PBDTT-FTTE, and (iv) low-crystallinity conducting PEDOT:PSS. The (semi-)conducting films are characterized by a battery of morphology and microstructure analysis techniques and by charge transport measurements. We report that remarkably enhanced mobilities/conductivities, as high as 5.7×/3.9×, are achieved by controlled growth of nanofibril aggregates and by backbone alignment, with the adjusted R2 (R2adj) correlation between aggregation and charge transport as high as 95%. However, while shear-induced aggregation is important for enhancing charge transport, backbone alignment alone does not guarantee charge transport anisotropy. The correlations between efficient charge transport and aggregation are clearly shown, while mobility and degree of orientation are not always well-correlated. These observations provide insights into macroscopic charge transport mechanisms in conjugated polymers and suggest guidelines for optimization.

9.
J Am Chem Soc ; 139(41): 14356-14359, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28948782

RESUMO

We report a new naphthalene bis(4,8-diamino-1,5-dicarboxyl)amide (NBA) building block for polymeric semiconductors. Computational modeling suggests that regio-connectivity at the 2,6- or 3,7-NBA positions strongly modulates polymer backbone torsion and, therefore, intramolecular π-conjugation and aggregation. Optical, electrochemical, and X-ray diffraction characterization of 3,7- and 2,6-dithienyl-substituted NBA molecules and corresponding isomeric NBA-bithiophene copolymers P1 and P2, respectively, reveals the key role of regio-connectivity. Charge transport measurements demonstrate that while the twisted 3,7-NDA-based P1 is a poor semiconductor, the planar 2,6-functionalized NBA polymers (P2-P4) exhibit ambipolarity, with µe and µh of up to 0.39 and 0.32 cm2/(V·s), respectively.

10.
Adv Mater ; 29(31)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28614602

RESUMO

A new type of nitrogen dioxide (NO2 ) gas sensor based on copper phthalocyanine (CuPc) thin film transistors (TFTs) with a simple, low-cost UV-ozone (UVO)-treated polymeric gate dielectric is reported here. The NO2 sensitivity of these TFTs with the dielectric surface UVO treatment is ≈400× greater for [NO2 ] = 30 ppm than for those without UVO treatment. Importantly, the sensitivity is ≈50× greater for [NO2 ] = 1 ppm with the UVO-treated TFTs, and a limit of detection of ≈400 ppb is achieved with this sensing platform. The morphology, microstructure, and chemical composition of the gate dielectric and CuPc films are analyzed by atomic force microscopy, grazing incident X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, revealing that the enhanced sensing performance originates from UVO-derived hydroxylated species on the dielectric surface and not from chemical reactions between NO2 and the dielectric/semiconductor components. This work demonstrates that dielectric/semiconductor interface engineering is essential for readily manufacturable high-performance TFT-based gas sensors.

11.
J Am Chem Soc ; 138(22): 7067-74, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27168054

RESUMO

Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (<600 °C) poly-silicon (LTPS). However, solution-processed display-relevant indium-gallium-tin-oxide (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established.


Assuntos
Carboidratos/química , Gálio/química , Índio/química , Semicondutores , Compostos de Estanho/química , Transistores Eletrônicos , Temperatura Alta
12.
J Am Chem Soc ; 138(22): 6944-7, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27210233

RESUMO

We report here π-conjugated small molecules and polymers based on the new π-acceptor building block, bithiophenesulfonamide (BTSA). Molecular orbital computations and optical, electrochemical, and crystal structure analyses illuminate the architecture and electronic structure of the BTSA unit versus other acceptor building blocks. Field-effect transistors and photovoltaic cells demonstrate that BTSA is a promising unit for the construction of π-conjugated semiconducting materials.

13.
Nat Chem ; 6(2): 122-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24451587

RESUMO

The ubiquitous nature of C-H bonds in organic molecules makes them attractive as a target for rapid complexity generation, but brings with it the problem of achieving selective reactions. In developing new methodologies for C-H functionalization, alkenes are an attractive starting material because of their abundance and low cost. Here we describe the conversion of 1-alkenes into 1,4-diols. The method involves the installation of a new Si,N-type chelating auxiliary group on the alkene followed by iridium-catalysed C-H silylation of an unactivated δ-C(sp(3))-H bond to produce a silolane intermediate. Oxidation of the C-Si bonds affords a 1,4-diol. The method is demonstrated to have broad scope and good functional group compatibility by application to the selective 1,4-oxygenation of several natural products and derivatives.


Assuntos
Álcoois/química , Alcenos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Carbono/química , Catálise , Hidrogênio/química , Irídio/química , Oxirredução , Teoria Quântica , Silanos/química
15.
J Am Chem Soc ; 134(12): 5528-31, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22414133

RESUMO

The efficient Pd-catalyzed double-fold C-H oxygenation of arenes into resorcinols using the newly developed 2-pyrimidyldiisopropylsilyl (PyrDipSi) directing group is described. Its use allows for the sequential introduction of OAc and OPiv groups in a one-pot manner to produce orthogonally protected resorcinol derivatives. The PyrDipSi group is superior to the previously developed 2-pyridyldiisopropylsilyl (PyDipSi) group, as it is efficient for monooxygenation of ortho-substituted arenes. Notably, the PyrDipSi group can be easily installed into arene molecules and can be easily removed or modified after the oxygenation reaction.


Assuntos
Hidrocarbonetos Aromáticos/química , Oxigênio/química , Paládio/química , Resorcinóis/química , Compostos de Silício/química , Catálise
16.
J Org Chem ; 73(11): 4275-8, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18471015

RESUMO

A variety of N-alkylated and N-arylated derivatives of methyl 1 H-indole-3-carboxylate were synthesized efficiently via Ullmann-type intramolecular arylamination, using the CuI-K 3PO 4-DMF system. This catalytic amination procedure can be performed with good to high yields under mild conditions under an air atmosphere.


Assuntos
Brometos/química , Cobre/química , Indóis/síntese química , Aminação , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...