Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(7): 1828-1831, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560875

RESUMO

In this Letter, we investigated the potential scalability of output power of a cladding-pumped laser and a power amplifier (booster) based on a multimode Bi-doped fiber (BDF) using the mode-selection approach. We fabricated the multimode double-clad graded-index (GRIN) fiber with a confined Bi-doped germanosilicate glass core with a diameter of ≈30 and ≈60 µm. Using femtosecond (fs) inscription technology with high spatial resolution, Bragg gratings of a special transverse structure allowing the selection of low-order modes were written into the core of BDFs. The operation features of the cladding-pumped multimode bismuth-doped GRIN fiber lasers with the inscribed Bragg gratings with various reflection coefficients were investigated. In addition, the behavior of the output power and the beam quality (M2 parameter) of the optical radiation of the developed devices was studied. The CW laser and booster operating at nearly 1.45 µm with maximum output powers of ≈0.8 and ≈1 W, respectively, based on the 60-µm-core BDF under pumping by multimode laser diodes at 808 nm were developed, which are, to the best of our knowledge, the most powerful cladding-pumped BDF devices to date. Near single-mode lasing (M2 <1.3) is demonstrated for a 30-µm-core fiber. The experimental data open new possibilities to achieve higher powers in cladding-pumped BDF sources, which are more cost-effective compared to core-pumped counterparts.

2.
Opt Lett ; 48(6): 1339-1342, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946922

RESUMO

Bismuth-doped fibers (BDFs) are considered nowadays as an essential part of the development of novel optical amplifiers, which can provide a significant upgrade to existing fiber optic telecommunication systems, securing multiband data transmission. In this paper, a series of BDF amplifiers (BDFAs) for O-, E-, and S-telecom bands based on a cladding pumping scheme using low-cost multimode semiconductor laser diodes at a wavelength of 0.7-0.8 µm were demonstrated for, it is understood, the first time. The developed BDFAs are characterized by a high peak gain of >25-30 dB in the corresponding telecom bands and a relatively low noise figure of 5-6 dB. Comparative analysis shows that most of the parameters of cladding pumped BDFAs are close to those of the best core pumped ones. This research opens up new opportunities for utilizing Bi-doped fibers as a key element of cost-effective and ready-to-work BDFAs for various practical applications.

3.
Opt Lett ; 48(2): 299-302, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638442

RESUMO

We report the 1.3/1.4 µm dual-wave band dissipative soliton resonance (DSR) in a passively mode-locked bismuth-doped phosphosilicate fiber (Bi-PSF) laser. The low-water-peak Bi-PSF with two bismuth active centers associated with silicon and phosphorus supports the O+E-band gain. Using a 1239 nm home-made Raman fiber laser as pump source and nonlinear amplifying loop mirror for initiating mode-locking, stable DSR operation at 1343 and 1406 nm is achieved with the spectral bandwidth of 12 and 16 nm. The pulse duration with the pump power increases from 62 to 270 ps with a repetition frequency of 4.069 MHz. The average power is 11.05 mW corresponding to the maximum energy of 2.7 nJ. This is, to the best of our knowledge, the first demonstration of a mode-locked fiber laser in the ∼1.38 µm water absorption band and the O+E dual-wave band operation for applications in all-spectral-band communications, bio-medical imaging, and terahertz difference frequency generation.

4.
Opt Lett ; 47(4): 778-781, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167523

RESUMO

For the first time, to the best of the authors' knowledge, a cladding-pumped bismuth-doped fiber laser (BDFL) is demonstrated. A "home-made" Bi-doped germanosilicate fiber with a 125 µm circular outer cladding made of fused silica and coated by a low refractive index polymer is used as an active medium pumped by commercial multimode laser diodes with a total output power of 25 W at 808 nm. We find that the BDFL with a free-running cavity (when feedback is provided by ≈4% back reflection from two bare right-angle cleaved fiber ends) composed of a 100-m-long bismuth-doped fiber is capable of emitting at a wavelength of 1440 nm. A slope efficiency of 0.5% with respect to the absorbed pump power with a maximum output power of ≈50 mW is obtained in a BDFL with a cavity formed by a highly reflective Bragg grating at 1461 nm and a right-angle cleaved fiber end. The beam quality factors (M2) of the output BDFL in the horizontal and vertical directions are measured to be 1.18 and 1.13, respectively. The processes affecting the efficiency of the BDFLs are also discussed. The possible improvements for the output power scaling and increasing the efficiency of the cladding-pumped BDFLs are proposed.

5.
Opt Express ; 28(20): 29335-29344, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114835

RESUMO

Determination of the active centers distribution across the fiber core as well as calculation of absorption cross sections is a challenging task for all types of bismuth-doped fibers. This is due to the low concentration of active centers and the ability of the bismuth ions to form various centers in silica-based glasses. In this work, we demonstrate the results of experimental measurement of radial distribution of bismuth active centers associated with phosphorus in fiber core using the luminescence spectroscopy. The shape of the distribution turned out to have prominent reduction of the active centers in the middle of the core. With these data, absorption cross section spectra were calculated by two methods. Both approaches demonstrated close values of absorption cross sections regardless the bismuth concentration and fiber geometry. The maximum of the absorption cross section was found to be 2.1 ± 0.3 pm2.

6.
Sci Rep ; 10(1): 11347, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647245

RESUMO

During last decades there has been considerable interest in developing a fiber amplifier for the 1.3-[Formula: see text]m spectral region that is comparable in performance to the Er-doped fiber amplifier operating near 1.55 [Formula: see text]m. It is due to the fact that most of the existing fiber-optic communication systems that dominate terrestrial networks could be used for the data transmission in O-band (1260-1360 nm), where dispersion compensation is not required, providing a low-cost increase of the capacity. In this regard, significant efforts of the research laboratories were initially directed towards the study of the praseodymium-doped fluoride fiber amplifier having high gain and output powers at the desired wavelengths. However, despite the fact that this type of amplifiers had rapidly appeared as a commercial amplifier prototype it did not receive widespread demand in the telecom industry because of its low efficiency. It stimulated the search of novel optical materials for this purpose. About 10 years ago, a new type of bismuth-doped active fibers was developed, which turned out to be a promising medium for amplification at 1.3 [Formula: see text]m. Here, we report on the development of a compact and efficient 20-dB (achieved for signal powers between [Formula: see text] and [Formula: see text] dBm) bismuth-doped fiber amplifier for a wavelength region of 1300-1350 nm in the forward, backward and bi-directional configurations, which can be pumped by a commercially available laser diode at 1230 nm with an output power of 250 mW. The compactness of the tested amplifier was provided by using a depressed cladding active fiber with low bending loss, which was coiled on a reel with a radius of 1.5 cm. We studied the gain and noise figure characteristics at different pump and signal powers. A record gain coefficient of 0.18 dB/mW (at the pump-to-signal power conversion efficiency of above 27[Formula: see text]) has been achieved.

7.
Opt Lett ; 45(9): 2576-2579, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356820

RESUMO

For the first time, we report on the fabrication of a bend-insensitive single-mode bismuth (Bi)-doped $ {{\rm P}_2}{{\rm O}_5} {-} {{\rm SiO}_2} $P2O5-SiO2 fiber having a depressed cladding design and study its gain characteristics at a spectral region of 1.3-1.4 µm. It was shown that the obtained Bi-doped fiber can efficiently operate in the spectral band even at a bend radius of 1.5 cm. In addition, it was shown that this type of fiber has a smaller mode-field diameter in comparison with a step-index single-mode Bi-doped $ {{\rm P}_2}{{\rm O}_5} {-} {{\rm SiO}_2} $P2O5-SiO2 fiber with $ \Delta {n} \approx 0.006 $Δn≈0.006 that resulted in a decrease of saturation power and, as a consequence, in a reduction of the total pump power required to a high-level-gain operation. The laser and gain experiments show the possibility of the construction of a compact high-performance optical amplifier for O-band based on the depressed-cladding Bi-doped fiber.

8.
Opt Express ; 27(22): 31542-31552, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684388

RESUMO

We report experimental measurements and numerical calculations regarding the photostability of laser-active centers associated with bismuth (BACs) in Bi-doped GeO2-SiO2 glass fibers under pumping at 1550 nm at different temperatures. It was discovered that BACs are unstable under 1550-nm pumping when the temperature is elevated to hundreds of degrees centigrade. A simple numerical model was proposed to account for the discovered instability which turned out to be in good agreement with the experimental data.

9.
Nano Lett ; 19(9): 5836-5843, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343179

RESUMO

Materials with electrically tunable optical properties offer a wide range of opportunities for photonic applications. The optical properties of the single-walled carbon nanotubes (SWCNTs) can be significantly altered in the near-infrared region by means of electrochemical doping. The states' filling, which is responsible for the optical absorption suppression under doping, also alters the nonlinear optical response of the material. Here, for the first time we report that the electrochemical doping can tailor the nonlinear optical absorption of SWCNT films and demonstrate its application to control pulsed fiber laser generation. With a pump-probe technique, we show that under an applied voltage below 2 V the photobleaching of the material can be gradually reduced and even turned to photoinduced absorption. Furthermore, we integrated a carbon nanotube electrochemical cell on a side-polished fiber to tune the absorption saturation and implemented it into the fully polarization-maintaining fiber laser. We show that the pulse generation regime can be reversibly switched between femtosecond mode-locking and microsecond Q-switching using different gate voltages. This approach paves the road toward carbon nanotube optical devices with tunable nonlinearity.

10.
Opt Express ; 26(18): 23911-23917, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184885

RESUMO

Bismuth-doped fiber is a promising active media for pulsed lasers operating in various spectral regions. In this paper, we report on a picosecond mode-locked laser at a wavelength of 1.32 µm, based on a phosphosilicate fiber doped with bismuth. Stable self-starting generation of dissipative solitons, using single-walled carbon nanotubes (SWCNT) as a saturable absorber, was achieved. Evolution of the pulsed regime, depending on pump power, and stability of the pulsing were investigated.

11.
Opt Express ; 26(10): 12363-12371, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801271

RESUMO

The effect of thermal annealing on the luminescent and laser properties of high-germania-core silicate fibers doped with bismuth was investigated. We studied the behavior of optical absorption assigned to the bismuth-related active centers associated with germanium as well as the behavior of unsaturable absorption in annealed fibers with respect to the Bi content. The dependence of the increment of the active center content on the Bi concentration in the annealed fibers was obtained. We achieved laser oscillations near a wavelength of 1700 nm with a slope efficiency of 18% using a 8.5 m long Bi-doped fiber. The comparison of the output parameters of the laser based on an annealed Bi-doped fiber with the ones of a pristine Bi-doped fiber laser is given. The performance of the obtained bismuth-doped fiber lasers was modeled using the propagation and rate equations of a homogeneous quasi-two-level laser medium. Theoretical results are compared with experimental ones.

12.
Opt Lett ; 43(5): 1127-1130, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29489796

RESUMO

We demonstrate, to the best of our knowledge, the first bismuth-doped fiber laser operating at 1.7 µm mode-locked by means of Kerr nonlinearity. The laser setup has a figure-of-eight all-fiber design with a nonlinear amplifying loop mirror (NALM) and yields 17 ps pulses with a 3.57 MHz repetition rate and the energy 84 pJ. Using the master oscillator power amplifier scheme with a bismuth fiber amplifier, the output pulse energy of 5.7 nJ was achieved. Further pulse compression in the fiber compressor shortened pulses to 630 fs. The operation of the master oscillator was modeled using the nonlinear Schrödinger equation. Calculated data are in good agreement with experimental results.

13.
Sci Rep ; 7: 44194, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281677

RESUMO

Mode-locked fibre laser as a dissipative system is characterized by rich forms of soliton interaction, which take place via internal energy exchange through noisy background in the presence of dispersion and nonlinearity. The result of soliton interaction was either stationary-localized or chaotically-oscillated soliton complexes, which have been shown before as stand-alone in the cavity. Here we report on a new form of solitons complex observed in Bi-doped mode-locked fibre laser operated at 1450 nm. The solitons are arranged in two different group types contemporizing in the cavity: one pulse group propagates as bound solitons with fixed phase relation and interpulse position eventuated in 30 dB spectrum modulation depth; while the other pulses form a bunch with continuously and chaotically moving solitons. The article describes both experimental and theoretical considerations of this effect.

14.
Sci Rep ; 6: 30083, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435232

RESUMO

Random fiber lasers operating via the Rayleigh scattering (RS) feedback attract now a great deal of attention as they generate a high-quality unidirectional laser beam with the efficiency and performance comparable and even exceeding those of fiber lasers with conventional cavities. Similar to other random lasers, both amplification and random scattering are distributed here along the laser medium being usually represented by a kilometers-long passive fiber with Raman gain. However, it is hardly possible to utilize normal gain in conventional active fibers as they are usually short and RS is negligible. Here we report on the first demonstration of the RS-based random lasing in an active fiber. This became possible due to the implementation of a new Bi-doped fiber with an increased amplification length and RS coefficient. The realized Bi-fiber random laser generates in a specific spectral region (1.42 µm) exhibiting unique features, in particular, a much narrower linewidth than that in conventional cavity of the same length, in agreement with the developed theory. Lasers of this type have a great potential for applications as Bi-doped fibers with different host compositions enable laser operation in an extremely broad range of wavelengths, 1.15-1.78 µm.

15.
Sci Rep ; 6: 28939, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357592

RESUMO

It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems ("capacity crunch") because the operation of the EDFA is limited to a spectral region of 1530-1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150-1530 nm) and longer wavelength (1600-1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640-1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique.

16.
Opt Express ; 23(15): 19226-33, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367584

RESUMO

Photoinduced reduction of absorption (photobleaching) in bismuth-doped germanosilicate fibers irradiated with 532-nm laser has been observed for the first time. It was demonstrated that bismuth-related active centers having the absorption bands at wavelengths of 1400 and 1700 nm degrade under photoexcitation at 532 nm. The photobleaching process rate was estimated using conventional stretched exponential technique. It was found that the photobleaching rate in bismuth-doped germanosilicate fibers does not depend on type of bismuth-related active center. The possible underlying mechanism of photobleaching process in bismuth-doped fibers is discussed.

17.
Opt Express ; 23(19): 24833-42, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406683

RESUMO

Generation of regular pulses of linearly polarized radiation with periodic self-induced laser line sweeping by ~10 nm near central wavelength of ~1460 nm has been demonstrated for the first time in an all-fiber Bismuth laser without any tuning element. It has been shown that the radiation of each pulse is single-frequency, and the pulse-to-pulse frequency shift is as low as 1 MHz corresponding to one intermode interval in 100-m long laser cavity. The measured intra-pulse frequency chirp is below 1 MHz while the pulses are long (~10 µs) and overlapping. Thus the sweeping is nearly continuous in frequency and time domains.

18.
Opt Lett ; 40(10): 2217-20, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26393703

RESUMO

We demonstrate a 1.44-µm bismuth-doped master oscillator-power amplifier (MOPA) system for generating femtosecond pulses. The cavity of master oscillator comprises dispersion-compensating fiber for detuning the total dispersion to the normal regime and a carbon nanotube saturable absorber for triggering the mode-locked operation. The described multifunction bismuth fiber amplifier performs energy scaling, large spectral broadening, and pulse compression. The results show that the large chirp superimposed on the pulses in the bismuth oscillator with normal dispersion can be effectively suppressed in a subsequent bismuth power amplifier with anomalous dispersion and high nonlinearity, resulting in high-quality pulses with record duration of 240 fs. An all-fiber design provides a practical solution that avoids the need for supplementary pulse stretching and compression.

19.
Opt Lett ; 39(24): 6927-30, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25503032

RESUMO

Bismuth-doped optical fibers and fiber lasers operating in 1625-1775 nm range have been developed for the first time to the best of our knowledge. Now the existing bismuth-doped lasers, including the result presented in this Letter, can cover O, E, S, C, L, and U telecommunication bands. In addition, new data on the nature of the bismuth-related active center were obtained and discussed.

20.
Opt Express ; 22(10): 11446-55, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921266

RESUMO

We demonstrate that a combination of ultrafast wafer bonded semiconductor disk laser and a bismuth-doped fiber amplifier provides an attractive design for high power 1.33 µm tandem hybrid systems. Over 0.5 W of average output power was achieved at a repetition rate of 827 MHz that corresponds to a pulse energy of 0.62 nJ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...