Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(5): e0233043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413068

RESUMO

Salvage logging in burned forests can negatively affect habitat for white-headed woodpeckers (Dryobates albolarvatus), a species of conservation concern, but also meets socioeconomic demands for timber and human safety. Habitat suitability index (HSI) models can inform forest management activities to help meet habitat conservation objectives. Informing post-fire forest management, however, involves model application at new locations as wildfires occur, requiring evaluation of predictive performance across locations. We developed HSI models for white-headed woodpeckers using nest sites from two burned-forest locations in Oregon, the Toolbox (2002) and Canyon Creek (2015) fires. We measured predictive performance by developing one model at each of the two locations and quantifying discrimination of nest from reference sites at two other wildfire locations where the model had not been developed (either Toolbox or Canyon Creek, and the Barry Point Fire [2011]). We developed and evaluated Maxent models based on remotely sensed environmental metrics to support habitat mapping, and weighted logistic regression (WLR) models that combined remotely sensed and field-collected metrics to inform management prescriptions. Both Maxent and WLR models developed either at Canyon Creek or Toolbox performed adequately to inform management when applied at the alternate Toolbox or Canyon Creek location, respectively (area under the receiver-operating-characteristic curve [AUC] range = 0.61-0.72) but poorly when applied at Barry Point (AUC = 0.53-0.57). The final HSI models fitted to Toolbox and Canyon Creek data quantified suitable nesting habitat as severely burned or open sites adjacent to lower severity and closed canopy sites, where foraging presumably occurs. We suggest these models are applicable at locations similar to development locations but not at locations resembling Barry Point, which were characterized by more (pre-fire) canopy openings, larger diameter trees, less ponderosa pine (Pinus ponderosa), and more juniper (Juniperus occidentalis). Considering our results, we recommend caution when applying HSI models developed at individual wildfire locations to inform post-fire management at new locations without first evaluating predictive performance.


Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Florestas , Incêndios Florestais , Animais , Conservação dos Recursos Naturais/estatística & dados numéricos , Feminino , Modelos Logísticos , Masculino , Modelos Biológicos , Comportamento de Nidação , Oregon
2.
Ecol Evol ; 8(2): 1171-1185, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375788

RESUMO

Sparsely distributed species attract conservation concern, but insufficient information on population trends challenges conservation and funding prioritization. Occupancy-based monitoring is attractive for these species, but appropriate sampling design and inference depend on particulars of the study system. We employed spatially explicit simulations to identify minimum levels of sampling effort for a regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus), a sparsely distributed, territorial species threatened by habitat decline and degradation, as a case study. We compared the original design with commonly proposed alternatives with varying targets of inference (i.e., species range, space use, or abundance) and spatial extent of sampling. Sampling effort needed to achieve adequate power to observe a long-term population trend (≥80% chance to observe a 2% yearly decline over 20 years) with the previously used study design consisted of annually monitoring ≥120 transects using a single-survey approach or ≥90 transects surveyed twice per year using a repeat-survey approach. Designs that shifted inference toward finer-resolution trends in abundance and extended the spatial extent of sampling by shortening transects, employing a single-survey approach to monitoring, and incorporating a panel design (33% of units surveyed per year) improved power and reduced error in estimating abundance trends. In contrast, efforts to monitor coarse-scale trends in species range or space use with repeat surveys provided extremely limited statistical power. Synthesis and applications. Sampling resolutions that approximate home range size, spatially extensive sampling, and designs that target inference of abundance trends rather than range dynamics are probably best suited and most feasible for broad-scale occupancy-based monitoring of sparsely distributed territorial animal species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...