Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1422701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984158

RESUMO

Drought is a major factor affecting crops, thus efforts are needed to increase plant resilience to this abiotic stress. The overlapping signaling pathways between drought and cell wall integrity maintenance responses create a possibility of increasing drought resistance by modifying cell walls. Here, using herbaceous and woody plant model species, Arabidopsis and hybrid aspen, respectively, we investigated how the integrity of xylan in secondary walls affects the responses of plants to drought stress. Plants, in which secondary wall xylan integrity was reduced by expressing fungal GH10 and GH11 xylanases or by affecting genes involved in xylan backbone biosynthesis, were subjected to controlled drought while their physiological responses were continuously monitored by RGB, fluorescence, and/or hyperspectral cameras. For Arabidopsis, this was supplemented with survival test after complete water withdrawal and analyses of stomatal function and stem conductivity. All Arabidopsis xylan-impaired lines showed better survival upon complete watering withdrawal, increased stomatal density and delayed growth inhibition by moderate drought, indicating increased resilience to moderate drought associated with modified xylan integrity. Subtle differences were recorded between xylan biosynthesis mutants (irx9, irx10 and irx14) and xylanase-expressing lines. irx14 was the most drought resistant genotype, and the only genotype with increased lignin content and unaltered xylem conductivity despite its irx phenotype. Rosette growth was more affected by drought in GH11- than in GH10-expressing plants. In aspen, mild downregulation of GT43B and C genes did not affect drought responses and the transgenic plants grew better than the wild-type in drought and well-watered conditions. Both GH10 and GH11 xylanases strongly inhibited stem elongation and root growth in well-watered conditions but growth was less inhibited by drought in GH11-expressing plants than in wild-type. Overall, plants with xylan integrity impairment in secondary walls were less affected than wild-type by moderately reduced water availability but their responses also varied among genotypes and species. Thus, modifying the secondary cell wall integrity can be considered as a potential strategy for developing crops better suited to withstand water scarcity, but more research is needed to address the underlying molecular causes of this variability.

2.
Biotechnol Biofuels Bioprod ; 17(1): 73, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822388

RESUMO

BACKGROUND: Lignin and xylan are important determinants of cell wall structure and lignocellulosic biomass digestibility. Genetic manipulations that individually modify either lignin or xylan structure improve polysaccharide digestibility. However, the effects of their simultaneous modifications have not been explored in a similar context. Here, both individual and combinatorial modification in xylan and lignin was studied by analysing the effect on plant cell wall properties, biotic stress responses and integrity sensing. RESULTS: Arabidopsis plant co-harbouring mutation in FERULATE 5-HYDROXYLASE (F5H) and overexpressing Aspergillus niger acetyl xylan esterase (35S:AnAXE1) were generated and displayed normal growth attributes with intact xylem architecture. This fah1-2/35S:AnAXE1 cross was named as hyper G lignin and hypoacetylated (HrGHypAc) line. The HrGHypAc plants showed increased crystalline cellulose content with enhanced digestibility after chemical and enzymatic pre-treatment. Moreover, both parents and HrGHypAc without and after pre-treating with glucuronyl esterase and alpha glucuronidase exhibited an increase in xylose release after xylanase digestion as compared to wild type. The de-pectinated fraction in HrGHypAc displayed elevated levels of xylan and cellulose. Furthermore, the transcriptomic analysis revealed differential expression in cell wall biosynthetic, transcription factors and wall-associated kinases genes implying the role of lignin and xylan modification on cellular regulatory processes. CONCLUSIONS: Simultaneous modification in xylan and lignin enhances cellulose content with improved saccharification efficiency. These modifications loosen cell wall complexity and hence resulted in enhanced xylose and xylobiose release with or without pretreatment after xylanase digestion in both parent and HrGHypAc. This study also revealed that the disruption of xylan and lignin structure is possible without compromising either growth and development or defense responses against Pseudomonas syringae infection.

3.
New Phytol ; 240(6): 2312-2334, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857351

RESUMO

Stem bending in trees induces flexure wood but its properties and development are poorly understood. Here, we investigated the effects of low-intensity multidirectional stem flexing on growth and wood properties of hybrid aspen, and on its transcriptomic and hormonal responses. Glasshouse-grown trees were either kept stationary or subjected to several daily shakes for 5 wk, after which the transcriptomes and hormones were analyzed in the cambial region and developing wood tissues, and the wood properties were analyzed by physical, chemical and microscopy techniques. Shaking increased primary and secondary growth and altered wood differentiation by stimulating gelatinous-fiber formation, reducing secondary wall thickness, changing matrix polysaccharides and increasing cellulose, G- and H-lignin contents, cell wall porosity and saccharification yields. Wood-forming tissues exhibited elevated jasmonate, polyamine, ethylene and brassinosteroids and reduced abscisic acid and gibberellin signaling. Transcriptional responses resembled those during tension wood formation but not opposite wood formation and revealed several thigmomorphogenesis-related genes as well as novel gene networks including FLA and XTH genes encoding plasma membrane-bound proteins. Low-intensity stem flexing stimulates growth and induces wood having improved biorefinery properties through molecular and hormonal pathways similar to thigmomorphogenesis in herbaceous plants and largely overlapping with the tension wood program of hardwoods.


Assuntos
Populus , Madeira , Poliaminas/análise , Poliaminas/metabolismo , Poliaminas/farmacologia , Celulose/metabolismo , Polissacarídeos/metabolismo , Populus/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Cells ; 12(16)2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37626829

RESUMO

Production of biofuel from lignocellulosic biomass is relatively low due to the limited knowledge about natural cell wall loosening and cellulolytic processes in plants. Industrial separation of cellulose fiber mass from lignin, its saccharification and alcoholic fermentation is still cost-ineffective and environmentally unfriendly. Assuming that the green transformation is inevitable and that new sources of raw materials for biofuels are needed, we decided to study cell death-a natural process occurring in plants in the context of reducing the recalcitrance of lignocellulose for the production of second-generation bioethanol. "Members of the enzyme families responsible for lysigenous aerenchyma formation were identified during the root hypoxia stress in Arabidopsis thaliana cell death mutants. The cell death regulatory genes, LESION SIMULATING DISEASE 1 (LSD1), PHYTOALEXIN DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) conditionally regulate the cell wall when suppressed in transgenic aspen. During four years of growth in the field, the following effects were observed: lignin content was reduced, the cellulose fiber polymerization degree increased and the growth itself was unaffected. The wood of transgenic trees was more efficient as a substrate for saccharification, alcoholic fermentation and bioethanol production. The presented results may trigger the development of novel biotechnologies in the biofuel industry.


Assuntos
Arabidopsis , Proteínas de Plantas , Biocombustíveis , Lignina , Celulose , Arabidopsis/genética , Biotecnologia , Morte Celular
5.
Front Plant Sci ; 14: 1218302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528966

RESUMO

Xylan that comprises roughly 25% of hardwood biomass is undesirable in biorefinery applications involving saccharification and fermentation. Efforts to reduce xylan levels have therefore been made in many species, usually resulting in improved saccharification. However, such modified plants have not yet been tested under field conditions. Here we evaluate the field performance of transgenic hybrid aspen lines with reduced xylan levels and assess their usefulness as short-rotation feedstocks for biorefineries. Three types of transgenic lines were tested in four-year field tests with RNAi constructs targeting either Populus GT43 clades B and C (GT43BC) corresponding to Arabidopsis clades IRX9 and IRX14, respectively, involved in xylan backbone biosynthesis, GATL1.1 corresponding to AtGALT1 involved in xylan reducing end sequence biosynthesis, or ASPR1 encoding an atypical aspartate protease. Their productivity, wood quality traits, and saccharification efficiency were analyzed. The only lines differing significantly from the wild type with respect to growth and biotic stress resistance were the ASPR1 lines, whose stems were roughly 10% shorter and narrower and leaves showed increased arthropod damage. GT43BC lines exhibited no growth advantage in the field despite their superior growth in greenhouse experiments. Wood from the ASPR1 and GT43BC lines had slightly reduced density due to thinner cell walls and, in the case of ASPR1, larger cell diameters. The xylan was less extractable by alkali but more hydrolysable by acid, had increased glucuronosylation, and its content was reduced in all three types of transgenic lines. The hemicellulose size distribution in the GALT1.1 and ASPR1 lines was skewed towards higher molecular mass compared to the wild type. These results provide experimental evidence that GATL1.1 functions in xylan biosynthesis and suggest that ASPR1 may regulate this process. In saccharification without pretreatment, lines of all three constructs provided 8-11% higher average glucose yields than wild-type plants. In saccharification with acid pretreatment, the GT43BC construct provided a 10% yield increase on average. The best transgenic lines of each construct are thus predicted to modestly outperform the wild type in terms of glucose yields per hectare. The field evaluation of transgenic xylan-reduced aspen represents an important step towards more productive feedstocks for biorefineries.

6.
New Phytol ; 238(1): 297-312, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600379

RESUMO

Wood is the most important repository of assimilated carbon in the biosphere, in the form of large polymers (cellulose, hemicelluloses including glucuronoxylan, and lignin) that interactively form a composite, together with soluble extractives including phenolic and aliphatic compounds. Molecular interactions among these compounds are not fully understood. We have targeted the expression of a fungal α-glucuronidase to the wood cell wall of aspen (Populus tremula L. × tremuloides Michx.) and Arabidopsis (Arabidopsis thaliana (L.) Heynh), to decrease contents of the 4-O-methyl glucuronopyranose acid (mGlcA) substituent of xylan, to elucidate mGlcA's functions. The enzyme affected the content of aliphatic insoluble cell wall components having composition similar to suberin, which required mGlcA for binding to cell walls. Such suberin-like compounds have been previously identified in decayed wood, but here, we show their presence in healthy wood of both hardwood and softwood species. By contrast, γ-ester bonds between mGlcA and lignin were insensitive to cell wall-localized α-glucuronidase, supporting the intracellular formation of these bonds. These findings challenge the current view of the wood cell wall composition and reveal a novel function of mGlcA substituent of xylan in fastening of suberin-like compounds to cell wall. They also suggest an intracellular initiation of lignin-carbohydrate complex assembly.


Assuntos
Arabidopsis , Populus , Madeira/química , Lignina/metabolismo , Xilanos/metabolismo , Ácido Glucurônico/análise , Ácido Glucurônico/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Populus/metabolismo
7.
Plant Biotechnol J ; 21(5): 1005-1021, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36668687

RESUMO

Trees constitute promising renewable feedstocks for biorefinery using biochemical conversion, but their recalcitrance restricts their attractiveness for the industry. To obtain trees with reduced recalcitrance, large-scale genetic engineering experiments were performed in hybrid aspen blindly targeting genes expressed during wood formation and 32 lines representing seven constructs were selected for characterization in the field. Here we report phenotypes of five-year old trees considering 49 traits related to growth and wood properties. The best performing construct considering growth and glucose yield in saccharification with acid pretreatment had suppressed expression of the gene encoding an uncharacterized 2-oxoglutarate-dependent dioxygenase (2OGD). It showed minor changes in wood chemistry but increased nanoporosity and glucose conversion. Suppressed levels of SUCROSE SYNTHASE, (SuSy), CINNAMATE 4-HYDROXYLASE (C4H) and increased levels of GTPase activating protein for ADP-ribosylation factor ZAC led to significant growth reductions and anatomical abnormalities. However, C4H and SuSy constructs greatly improved glucose yields in saccharification without and with pretreatment, respectively. Traits associated with high glucose yields were different for saccharification with and without pretreatment. While carbohydrates, phenolics and tension wood contents positively impacted the yields without pretreatment and growth, lignin content and S/G ratio were negative factors, the yields with pretreatment positively correlated with S lignin and negatively with carbohydrate contents. The genotypes with high glucose yields had increased nanoporosity and mGlcA/Xyl ratio, and some had shorter polymers extractable with subcritical water compared to wild-type. The pilot-scale industrial-like pretreatment of best-performing 2OGD construct confirmed its superior sugar yields, supporting our strategy.


Assuntos
Lignina , Populus , Lignina/metabolismo , Populus/genética , Populus/metabolismo , Madeira/genética , Madeira/metabolismo , Glucose/metabolismo , Engenharia Genética
8.
Front Plant Sci ; 12: 704960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557213

RESUMO

High acetylation of xylan in hardwoods decreases their value as biorefinery feedstocks. To counter this problem, we have constitutively suppressed RWA genes encoding acetyl-CoA transporters using the 35S promoter, or constitutively and wood-specifically (using the WP promoter) expressed fungal acetyl xylan esterases of families CE1 (AnAXE1) and CE5 (HjAXE), to reduce acetylation in hybrid aspen. All these transformations improved the saccharification of wood from greenhouse-grown trees. Here, we describe the chemical properties and saccharification potential of the resulting lines grown in a five-year field trial, and one type of them (WP:AnAXE1) in greenhouse conditions. Chemically, the lignocellulose of the field- and greenhouse-field-grown plants slightly differed, but the reductions in acetylation and saccharification improvement of engineered trees were largely maintained in the field. The main novel phenotypic observation in the field was higher lignification in lines with the WP promoter than those with the 35S promoter. Following growth in the field, saccharification glucose yields were higher from most transformed lines than from wild-type (WT) plants with no pretreatment, but there was no improvement in saccharification with acid pretreatment. Thus, acid pretreatment removes most recalcitrance caused by acetylation. We found a complex relationship between acetylation and glucose yields in saccharification without pretreatment, suggesting that other variables, for example, the acetylation pattern, affect recalcitrance. Bigger gains in glucose yields were observed in lines with the 35S promoter than in those with the WP promoter, possibly due to their lower lignin content. However, better lignocellulose saccharification of these lines was offset by a growth penalty and their glucose yield per tree was lower. In a comparison of the best lines with each construct, WP:AnAXE1 provided the highest glucose yield per tree from saccharification, with and without pretreatment, WP:HjAXE yields were similar to those of WT plants, and yields of lines with other constructs were lower. These results show that lignocellulose properties of field-grown trees can be improved by reducing cell wall acetylation using various approaches, but some affect productivity in the field. Thus, better understanding of molecular and physiological consequences of deacetylation is needed to obtain quantitatively better results.

9.
New Phytol ; 232(2): 673-691, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33993523

RESUMO

Xylem fibers are highly elongated cells that are key constituents of wood, play major physiological roles in plants, comprise an important terrestrial carbon reservoir, and thus have enormous ecological and economic importance. As they develop, from fusiform initials, their bodies remain the same length while their tips elongate and intrude into intercellular spaces. To elucidate mechanisms of tip elongation, we studied the cell wall along the length of isolated, elongating aspen xylem fibers and used computer simulations to predict the forces driving the intercellular space formation required for their growth. We found pectin matrix epitopes (JIM5, LM7) concentrated at the tips where cellulose microfibrils have transverse orientation, and xyloglucan epitopes (CCRC-M89, CCRC-M58) in fiber bodies where microfibrils are disordered. These features are accompanied by changes in cell wall thickness, indicating that while the cell wall elongates strictly at the tips, it is deposited all over fibers. Computer modeling revealed that the intercellular space formation needed for intrusive growth may only require targeted release of cell adhesion, which allows turgor pressure in neighboring fiber cells to 'round' the cells creating spaces. These characteristics show that xylem fibers' elongation involves a distinct mechanism that combines features of both diffuse and tip growth.


Assuntos
Populus , Madeira , Parede Celular , Xilema
10.
New Phytol ; 229(1): 186-198, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32491203

RESUMO

Despite the ecological and industrial importance of biomass accumulation in wood, the control of carbon (C) allocation to this tissue and to other tree tissues remain poorly understood. We studied sucrose synthase (SUS) to clarify its role in biomass formation and C metabolism at the whole tree level in hybrid aspen (Populus tremula × tremuloides). To this end, we analysed source leaves, phloem, developing wood, and roots of SUSRNAi trees using a combination of metabolite profiling, 13 CO2 pulse labelling experiments, and long-term field experiments. The glasshouse grown SUSRNAi trees exhibited a mild stem phenotype together with a reduction in wood total C. The 13 CO2 pulse labelling experiments showed an alteration in the C flow in all the analysed tissues, indicating that SUS affects C metabolism at the whole tree level. This was confirmed when the SUSRNAi trees were grown in the field over a 5-yr period; their stem height, diameter and biomass were substantially reduced. These results establish that SUS influences C allocation to developing wood, and that it affects C metabolism at the whole tree level.


Assuntos
Populus , Madeira , Carbono , Glucosiltransferases , Populus/genética , Árvores
11.
Sci Rep ; 10(1): 18089, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093525

RESUMO

Through the use of genome-wide association studies (GWAS) mapping it is possible to establish the genetic basis of phenotypic trait variation. Our GWAS study presents the first such effort in Norway spruce (Picea abies (L). Karst.) for the traits related to wood tracheid characteristics. The study employed an exome capture genotyping approach that generated 178 101 Single Nucleotide Polymorphisms (SNPs) from 40 018 probes within a population of 517 Norway spruce mother trees. We applied a least absolute shrinkage and selection operator (LASSO) based association mapping method using a functional multi-locus mapping approach, with a stability selection probability method as the hypothesis testing approach to determine significant Quantitative Trait Loci (QTLs). The analysis has provided 30 significant associations, the majority of which show specific expression in wood-forming tissues or high ubiquitous expression, potentially controlling tracheids dimensions, their cell wall thickness and microfibril angle. Among the most promising candidates based on our results and prior information for other species are: Picea abies BIG GRAIN 2 (PabBG2) with a predicted function in auxin transport and sensitivity, and MA_373300g0010 encoding a protein similar to wall-associated receptor kinases, which were both associated with cell wall thickness. The results demonstrate feasibility of GWAS to identify novel candidate genes controlling industrially-relevant tracheid traits in Norway spruce.


Assuntos
Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Picea/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Madeira/genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo
12.
Methods Mol Biol ; 2149: 145-164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617934

RESUMO

Wood is an important source of biomass for materials and chemicals, and a target for genetic engineering of its properties for different applications or for research. Wood properties can be altered by using different enzymes acting on cell wall polymers postsynthetically in cell walls. This approach allows for a precise polymer structure modification thanks to the specificity of enzymes used. Such enzymes can originate from all kinds of organisms, or even be modified in a desired way for novel attributes. Here we present a general strategy for expressing a microbial enzyme in aspen and targeting it to cell wall, using an example of fungal glucuronoyl esterase. We describe methods of vector cloning, plant transformation, transgenic line selection and multiplication, testing for the presence of enzymatic activity in different cell compartments, and finally the method of plant transferring from sterile culture to the greenhouse conditions.


Assuntos
Parede Celular/enzimologia , Lignina/metabolismo , Populus/enzimologia , Agrobacterium/metabolismo , DNA Complementar/genética , Fungos/genética , Expressão Gênica , Vetores Genéticos/metabolismo , Proteínas de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas , Populus/genética , Regiões Promotoras Genéticas/genética , Sinais Direcionadores de Proteínas , Transformação Genética , Transgenes , Madeira/genética
13.
Front Plant Sci ; 11: 651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528503

RESUMO

The production of biofuels and "green" chemicals from the lignocellulose of fast-growing hardwood species is hampered by extensive acetylation of xylan. Different strategies have been implemented to reduce xylan acetylation, resulting in transgenic plants that show good growth in the greenhouse, improved saccharification and fermentation, but the field performance of such plants has not yet been reported. The aim of this study was to evaluate the impact of reduced acetylation on field productivity and identify the best strategies for decreasing acetylation. Growth and biological stress data were evaluated for 18 hybrid aspen lines with 10-20% reductions in the cell wall acetyl content from a five year field experiment in Southern Sweden. The reduction in acetyl content was achieved either by suppressing the process of acetylation in the Golgi by reducing expression of REDUCED WALL ACETYLATION (RWA) genes, or by post-synthetic acetyl removal by fungal acetyl xylan esterases (AXEs) from two different families, CE1 and CE5, targeting them to cell walls. Transgene expression was regulated by either a constitutive promoter (35S) or a wood-specific promoter (WP). For the majority of transgenic lines, growth was either similar to that in WT and transgenic control (WP:GUS) plants, or slightly reduced. The slight reduction was observed in the AXE-expressing lines regulated by the 35S promoter, not those with the WP promoter which limits expression to cells developing secondary walls. Expressing AXEs regulated by the 35S promoter resulted in increased foliar arthropod chewing, and altered condensed tannins and salicinoid phenolic glucosides (SPGs) profiles. Greater growth inhibition was observed in the case of CE5 than with CE1 AXE, and it was associated with increased foliar necrosis and distinct SPG profiles, suggesting that CE5 AXE could be recognized by the pathogen-associated molecular pattern system. For each of three different constructs, there was a line with dwarfism and growth abnormalities, suggesting random genetic/epigenetic changes. This high frequency of dwarfism (17%) is suggestive of a link between acetyl metabolism and chromatin function. These data represent the first evaluation of acetyl-reduced plants from the field, indicating some possible pitfalls, and identifying the best strategies, when developing highly productive acetyl-reduced feedstocks.

14.
Front Plant Sci ; 11: 380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322259

RESUMO

Fast-growing broad-leaf tree species can serve as feedstocks for production of bio-based chemicals and fuels through biochemical conversion of wood to monosaccharides. This conversion is hampered by the xylan acetylation pattern. To reduce xylan acetylation in the wood, the Hypocrea jecorina acetyl xylan esterase (HjAXE) from carbohydrate esterase (CE) family 5 was expressed in hybrid aspen under the control of the wood-specific PtGT43B promoter and targeted to the secretory pathway. The enzyme was predicted to deacetylate polymeric xylan in the vicinity of cellulose due to the presence of a cellulose-binding module. Cell-wall-bound protein fractions from developing wood of transgenic plants were capable of releasing acetyl from finely ground wood powder, indicative of active AXE present in cell walls of these plants, whereas no such activity was detected in wild-type plants. The transgenic lines grew in height and diameter as well as wild-type trees, whereas their internodes were slightly shorter, indicating higher leaf production. The average acetyl content in the wood of these lines was reduced by 13%, mainly due to reductions in di-acetylated xylose units, and in C-2 and C-3 mono-acetylated xylose units. Analysis of soluble cell wall polysaccharides revealed a 4% reduction in the fraction of xylose units and an 18% increase in the fraction of glucose units, whereas the contents of cellulose and lignin were not affected. Enzymatic saccharification of wood from transgenic plants resulted in 27% higher glucose yield than for wild-type plants. Brunauer-Emmett-Teller (BET) analysis and Simons' staining pointed toward larger surface area and improved cellulose accessibility for wood from transgenic plants compared to wood from wild-type plants, which could be achieved by HjAXE deacetylating xylan bound to cellulose. The results show that CE5 family can serve as a source of enzymes for in planta reduction of recalcitrance to saccharification.

15.
Plant Physiol ; 182(4): 1946-1965, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32005783

RESUMO

Xyloglucan is the major hemicellulose of dicotyledon primary cell walls, affecting the load-bearing framework with the participation of xyloglucan endo-transglycosylase/hydrolases (XTHs). We used loss- and gain-of function approaches to study functions of XTH4 and XTH9 abundantly expressed in cambial regions during secondary growth of Arabidopsis (Arabidopsis thaliana). In secondarily thickened hypocotyls, these enzymes had positive effects on vessel element expansion and fiber intrusive growth. They also stimulated secondary wall thickening but reduced secondary xylem production. Cell wall analyses of inflorescence stems revealed changes in lignin, cellulose, and matrix sugar composition indicating an overall increase in secondary versus primary walls in mutants, indicative of higher xylem production compared with the wild type (since secondary walls were thinner). Intriguingly, the number of secondary cell wall layers compared with the wild type was increased in xth9 and reduced in xth4, whereas the double mutant xth4x9 displayed an intermediate number of layers. These changes correlated with specific Raman signals from the walls, indicating changes in lignin and cellulose. Secondary walls were affected also in the interfascicular fibers, where neither XTH4 nor XTH9 was expressed, indicating that these effects were indirect. Transcripts involved in secondary wall biosynthesis and cell wall integrity sensing, including THESEUS1 and WALL ASSOCIATED KINASE2, were highly induced in the mutants, indicating that deficiency in XTH4 and XTH9 triggers cell wall integrity signaling, which, we propose, stimulates xylem cell production and modulates secondary wall thickening. Prominent effects of XTH4 and XTH9 on secondary xylem support the hypothesis that altered xyloglucan affects wood properties both directly and via cell wall integrity sensing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glucanos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Xilanos/metabolismo , Xilema/metabolismo
16.
Front Plant Sci ; 11: 588846, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414796

RESUMO

Malectin domain (MD) is a ligand-binding protein motif of pro- and eukaryotes. It is particularly abundant in Viridiplantae, where it occurs as either a single (MD, PF11721) or tandemly duplicated domain (PF12819) called malectin-like domain (MLD). In herbaceous plants, MD- or MLD-containing proteins (MD proteins) are known to regulate development, reproduction, and resistance to various stresses. However, their functions in woody plants have not yet been studied. To unravel their potential role in wood development, we carried out genome-wide identification of MD proteins in the model tree species black cottonwood (Populus trichocarpa), and analyzed their expression and co-expression networks. P. trichocarpa had 146 MD genes assigned to 14 different clades, two of which were specific to the genus Populus. 87% of these genes were located on chromosomes, the rest being associated with scaffolds. Based on their protein domain organization, and in agreement with the exon-intron structures, the MD genes identified here could be classified into five superclades having the following domains: leucine-rich repeat (LRR)-MD-protein kinase (PK), MLD-LRR-PK, MLD-PK (CrRLK1L), MLD-LRR, and MD-Kinesin. Whereas the majority of MD genes were highly expressed in leaves, particularly under stress conditions, eighteen showed a peak of expression during secondary wall formation in the xylem and their co-expression networks suggested signaling functions in cell wall integrity, pathogen-associated molecular patterns, calcium, ROS, and hormone pathways. Thus, P. trichocarpa MD genes having different domain organizations comprise many genes with putative foliar defense functions, some of which could be specific to Populus and related species, as well as genes with potential involvement in signaling pathways in other tissues including developing wood.

17.
Plant J ; 99(4): 589-609, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31111606

RESUMO

Carbohydrate-active enzymes (CAZymes) catalyze the formation and modification of glycoproteins, glycolipids, starch, secondary metabolites and cell wall biopolymers. They are key enzymes for the biosynthesis of food and renewable biomass. Woody biomass is particularly important for long-term carbon storage and as an abundant renewable natural resource for many industrial applications. This study presents a re-annotation of CAZyme genes in the current Populus trichocarpa genome assembly and in silico functional characterization, based on high-resolution RNA-Seq data sets. Altogether, 1914 CAZyme and expansin genes were annotated in 101 families. About 1797 of these genes were found expressed in at least one Populus organ. We identified genes involved in the biosynthesis of different cell wall polymers and their paralogs. Whereas similar families exist in poplar and Arabidopsis thaliana (with the exception of CBM13 found only in poplar), a few families had significantly different copy numbers between the two species. To identify the transcriptional coordination and functional relatedness within the CAZymes and other proteins, we performed co-expression network analysis of CAZymes in wood-forming tissues using the AspWood database (http://aspwood.popgenie.org/aspwood-v3.0/) for Populus tremula. This provided an overview of the transcriptional changes in CAZymes during the transition from primary to secondary wall formation, and the clustering of transcripts into potential regulons. Candidate enzymes involved in the biosynthesis of polysaccharides were identified along with many tissue-specific uncharacterized genes and transcription factors. These collections offer a rich source of targets for the modification of secondary cell wall biosynthesis and other developmental processes in woody plants.


Assuntos
Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Madeira/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genômica , Proteínas de Plantas/genética , Sequenciamento Completo do Genoma , Madeira/genética
18.
Front Plant Sci ; 9: 1537, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405672

RESUMO

Non-cellulosic polysaccharides constitute approximately one third of usable woody biomass for human exploitation. In contrast to cellulose, these substances are composed of several different types of unit monosaccharides and their backbones are substituted by various groups. Their structural diversity and recent examples of their modification in transgenic plants and mutants suggest they can be targeted for improving wood-processing properties, thereby facilitating conversion of wood in a biorefinery setting. Critical knowledge on their structure-function relationship is slowly emerging, although our understanding of molecular interactions responsible for observed phenomena is still incomplete. This review: (1) provides an overview of structural features of major non-cellulosic polysaccharides of wood, (2) describes the fate of non-cellulosic polysaccharides during biorefinery processing, (3) shows how the non-cellulosic polysaccharides impact lignocellulose processing focused on yields of either sugars or polymers, and (4) discusses outlooks for the improvement of tree species for biorefinery by modifying the structure of non-cellulosic polysaccharides.

19.
Development ; 145(11)2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29739839

RESUMO

The shoot apical meristem of higher plants continuously generates new tissues and organs through complex changes in growth rates and directions of its individual cells. Cell growth, which is driven by turgor pressure, largely depends on the cell walls, which allow cell expansion through synthesis and structural changes. A previous study revealed a major contribution of wall isotropy in organ emergence, through the disorganization of cortical microtubules. We show here that this disorganization is coupled with the transcriptional control of genes involved in wall remodelling. Some of these genes are induced when microtubules are disorganized and cells shift to isotropic growth. Mechanical modelling shows that this coupling has the potential to compensate for reduced cell expansion rates induced by the shift to isotropic growth. Reciprocally, cell wall loosening induced by different treatments or altered cell wall composition promotes a disruption of microtubule alignment. Our data thus indicate the existence of a regulatory module activated during organ outgrowth, linking microtubule arrangements to cell wall remodelling.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Meristema/crescimento & desenvolvimento , Microtúbulos/metabolismo , Fenômenos Biomecânicos/fisiologia , Proliferação de Células/fisiologia , Ácidos Indolacéticos/metabolismo , Meristema/genética , Microtúbulos/genética
20.
New Phytol ; 219(1): 230-245, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29708593

RESUMO

Xylan is one of the main compounds determining wood properties in hardwood species. The xylan backbone is thought to be synthesized by a synthase complex comprising two members of the GT43 family. We downregulated all GT43 genes in hybrid aspen (Populus tremula × tremuloides) to understand their involvement in xylan biosynthesis. All three clades of the GT43 family were targeted for downregulation using RNA interference individually or in different combinations, either constitutively or specifically in developing wood. Simultaneous downregulation in developing wood of the B (IRX9) and C (IRX14) clades resulted in reduced xylan Xyl content relative to reducing end sequence, supporting their role in xylan backbone biosynthesis. This was accompanied by a higher lignocellulose saccharification efficiency. Unexpectedly, GT43 suppression in developing wood led to an overall growth stimulation, xylem cell wall thinning and a shift in cellulose orientation. Transcriptome profiling of these transgenic lines indicated that cell cycling was stimulated and secondary wall biosynthesis was repressed. We suggest that the reduced xylan elongation is sensed by the cell wall integrity surveying mechanism in developing wood. Our results show that wood-specific suppression of xylan-biosynthetic GT43 genes activates signaling responses, leading to increased growth and improved lignocellulose saccharification.


Assuntos
Proteínas de Plantas/genética , Populus/genética , Madeira/crescimento & desenvolvimento , Xilanos/biossíntese , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Parede Celular/química , Parede Celular/genética , Celulose/genética , Celulose/metabolismo , Quimera , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Lignina/genética , Lignina/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Interferência de RNA , Açúcares/metabolismo , Madeira/química , Madeira/genética , Xilanos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...