Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8406, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114489

RESUMO

Three-dimensional (3D) organoid cultures are flexible systems to interrogate cellular growth, morphology, multicellular spatial architecture, and cellular interactions in response to treatment. However, computational methods for analysis of 3D organoids with sufficiently high-throughput and cellular resolution are needed. Here we report Cellos, an accurate, high-throughput pipeline for 3D organoid segmentation using classical algorithms and nuclear segmentation using a trained Stardist-3D convolutional neural network. To evaluate Cellos, we analyze ~100,000 organoids with ~2.35 million cells from multiple treatment experiments. Cellos segments dye-stained or fluorescently-labeled nuclei and accurately distinguishes distinct labeled cell populations within organoids. Cellos can recapitulate traditional luminescence-based drug response of cells with complex drug sensitivities, while also quantifying changes in organoid and nuclear morphologies caused by treatment as well as cell-cell spatial relationships that reflect ecological affinity. Cellos provides powerful tools to perform high-throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.


Assuntos
Neoplasias , Humanos , Organoides , Proliferação de Células , Redes Neurais de Computação
2.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945601

RESUMO

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 µm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with ≤3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.

3.
Circulation ; 142(23): 2262-2275, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33025817

RESUMO

BACKGROUND: Pathogenic TNNT2 variants are a cause of hypertrophic and dilated cardiomyopathies, which promote heart failure by incompletely understood mechanisms. The precise functional significance for 87% of TNNT2 variants remains undetermined, in part, because of a lack of functional genomics studies. The knowledge of which and how TNNT2 variants cause hypertrophic and dilated cardiomyopathies could improve heart failure risk determination, treatment efficacy, and therapeutic discovery, and provide new insights into cardiomyopathy pathogenesis, as well. METHODS: We created a toolkit of human induced pluripotent stem cell models and functional assays using CRISPR/Cas9 to study TNNT2 variant pathogenicity and pathophysiology. Using human induced pluripotent stem cell-derived cardiomyocytes in cardiac microtissue and single-cell assays, we functionally interrogated 51 TNNT2 variants, including 30 pathogenic/likely pathogenic variants and 21 variants of uncertain significance. We used RNA sequencing to determine the transcriptomic consequences of pathogenic TNNT2 variants and adapted CRISPR/Cas9 to engineer a transcriptional reporter assay to assist prediction of TNNT2 variant pathogenicity. We also studied variant-specific pathophysiology using a thin filament-directed calcium reporter to monitor changes in myofilament calcium affinity. RESULTS: Hypertrophic cardiomyopathy-associated TNNT2 variants caused increased cardiac microtissue contraction, whereas dilated cardiomyopathy-associated variants decreased contraction. TNNT2 variant-dependent changes in sarcomere contractile function induced graded regulation of 101 gene transcripts, including MAPK (mitogen-activated protein kinase) signaling targets, HOPX, and NPPB. We distinguished pathogenic TNNT2 variants from wildtype controls using a sarcomere functional reporter engineered by inserting tdTomato into the endogenous NPPB locus. On the basis of a combination of NPPB reporter activity and cardiac microtissue contraction, our study provides experimental support for the reclassification of 2 pathogenic/likely pathogenic variants and 2 variants of uncertain significance. CONCLUSIONS: Our study found that hypertrophic cardiomyopathy-associated TNNT2 variants increased cardiac microtissue contraction, whereas dilated cardiomyopathy-associated variants decreased contraction, both of which paralleled changes in myofilament calcium affinity. Transcriptomic changes, including NPPB levels, directly correlated with sarcomere function and can be used to predict TNNT2 variant pathogenicity.


Assuntos
Variação Genética/fisiologia , Genômica/métodos , Miócitos Cardíacos/fisiologia , Sarcômeros/genética , Troponina T/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Sarcômeros/metabolismo , Troponina T/metabolismo
4.
Nat Commun ; 11(1): 751, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029736

RESUMO

Differences in immune function and responses contribute to health- and life-span disparities between sexes. However, the role of sex in immune system aging is not well understood. Here, we characterize peripheral blood mononuclear cells from 172 healthy adults 22-93 years of age using ATAC-seq, RNA-seq, and flow cytometry. These data reveal a shared epigenomic signature of aging including declining naïve T cell and increasing monocyte and cytotoxic cell functions. These changes are greater in magnitude in men and accompanied by a male-specific decline in B-cell specific loci. Age-related epigenomic changes first spike around late-thirties with similar timing and magnitude between sexes, whereas the second spike is earlier and stronger in men. Unexpectedly, genomic differences between sexes increase after age 65, with men having higher innate and pro-inflammatory activity and lower adaptive activity. Impact of age and sex on immune phenotypes can be visualized at https://immune-aging.jax.org to provide insights into future studies.


Assuntos
Envelhecimento/imunologia , Caracteres Sexuais , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Linfócitos B/imunologia , Sequenciamento de Cromatina por Imunoprecipitação , Epigênese Genética , Feminino , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/classificação , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Modelos Imunológicos , Monócitos/imunologia , RNA-Seq , Transcriptoma , Adulto Jovem
5.
Genetics ; 214(3): 719-733, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896565

RESUMO

The microbiome influences health and disease through complex networks of host genetics, genomics, microbes, and environment. Identifying the mechanisms of these interactions has remained challenging. Systems genetics in laboratory mice (Mus musculus) enables data-driven discovery of biological network components and mechanisms of host-microbial interactions underlying disease phenotypes. To examine the interplay among the whole host genome, transcriptome, and microbiome, we mapped QTL and correlated the abundance of cecal messenger RNA, luminal microflora, physiology, and behavior in a highly diverse Collaborative Cross breeding population. One such relationship, regulated by a variant on chromosome 7, was the association of Odoribacter (Bacteroidales) abundance and sleep phenotypes. In a test of this association in the BKS.Cg-Dock7m +/+ Leprdb/J mouse model of obesity and diabetes, known to have abnormal sleep and colonization by Odoribacter, treatment with antibiotics altered sleep in a genotype-dependent fashion. The many other relationships extracted from this study can be used to interrogate other diseases, microbes, and mechanisms.


Assuntos
Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Obesidade/genética , Receptores para Leptina/genética , Sono/genética , Animais , Antibacterianos/farmacologia , Bacteroides/genética , Cromossomos Humanos Par 7/genética , Microbioma Gastrointestinal/genética , Genômica , Genótipo , Humanos , Camundongos , Obesidade/microbiologia , Obesidade/fisiopatologia
6.
PLoS One ; 11(5): e0155957, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27223118

RESUMO

Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Drosophila/biossíntese , Voo Animal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Interação Gene-Ambiente , Proteínas de Homeodomínio/biossíntese , Neurogênese/fisiologia , Fatores de Transcrição/biossíntese , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética
7.
PLoS One ; 7(12): e51489, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23240029

RESUMO

Somatic sexual dimorphisms outside of the nervous system in Drosophila melanogaster are largely controlled by the male- and female-specific Doublesex transcription factors (DSX(M) and DSX(F), respectively). The DSX proteins must act at the right times and places in development to regulate the diverse array of genes that sculpt male and female characteristics across a variety of tissues. To explore how cellular and developmental contexts integrate with doublesex (dsx) gene function, we focused on the sexually dimorphic number of gustatory sense organs (GSOs) in the foreleg. We show that DSX(M) and DSX(F) promote and repress GSO formation, respectively, and that their relative contribution to this dimorphism varies along the proximodistal axis of the foreleg. Our results suggest that the DSX proteins impact specification of the gustatory sensory organ precursors (SOPs). DSX(F) then acts later in the foreleg to regulate gustatory receptor neuron axon guidance. These results suggest that the foreleg provides a unique opportunity for examining the context-dependent functions of DSX.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila melanogaster , Órgãos dos Sentidos , Paladar/fisiologia , Animais , Axônios/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/metabolismo , Órgãos dos Sentidos/fisiologia , Caracteres Sexuais , Paladar/genética
8.
Genetics ; 191(4): 1129-41, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22649078

RESUMO

Higher-order genome organization plays an important role in transcriptional regulation. In Drosophila, somatic pairing of homologous chromosomes can lead to transvection, by which the regulatory region of a gene can influence transcription in trans. We observe transvection between transgenes inserted at commonly used phiC31 integration sites in the Drosophila genome. When two transgenes that carry endogenous regulatory elements driving the expression of either LexA or GAL4 are inserted at the same integration site and paired, the enhancer of one transgene can drive or repress expression of the paired transgene. These transvection effects depend on compatibility between regulatory elements and are often restricted to a subset of cell types within a given expression pattern. We further show that activated UAS transgenes can also drive transcription in trans. We discuss the implication of these findings for (1) understanding the molecular mechanisms that underlie transvection and (2) the design of experiments that utilize site-specific integration.


Assuntos
Drosophila/genética , Epistasia Genética , Genoma de Inseto , Animais , Sítios de Ligação Microbiológicos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Ordem dos Genes , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Transgenes
9.
Genetics ; 189(1): 195-211, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21705753

RESUMO

The male-specific Fruitless proteins (FruM) act to establish the potential for male courtship behavior in Drosophila melanogaster and are expressed in small groups of neurons throughout the nervous system. We screened ∼1000 GAL4 lines, using assays for general courtship, male-male interactions, and male fertility to determine the phenotypes resulting from the GAL4-driven inhibition of FruM expression in subsets of these neurons. A battery of secondary assays showed that the phenotypic classes of GAL4 lines could be divided into subgroups on the basis of additional neurobiological and behavioral criteria. For example, in some lines, restoration of FruM expression in cholinergic neurons restores fertility or reduces male-male courtship. Persistent chains of males courting each other in some lines results from males courting both sexes indiscriminately, whereas in other lines this phenotype results from apparent habituation deficits. Inhibition of ectopic FruM expression in females, in populations of neurons where FruM is necessary for male fertility, can rescue female infertility. To identify the neurons responsible for some of the observed behavioral alterations, we determined the overlap between the identified GAL4 lines and endogenous FruM expression in lines with fertility defects. The GAL4 lines causing fertility defects generally had widespread overlap with FruM expression in many regions of the nervous system, suggesting likely redundant FruM-expressing neuronal pathways capable of conferring male fertility. From associations between the screened behaviors, we propose a functional model for courtship initiation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Comportamento Sexual Animal , Fatores de Transcrição/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Corte , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Fertilidade/genética , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Masculino , Proteínas do Tecido Nervoso/genética , Fenótipo , Fatores de Transcrição/genética
10.
Development ; 137(2): 323-32, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20040498

RESUMO

Although nervous system sexual dimorphisms are known in many species, relatively little is understood about the molecular mechanisms generating these dimorphisms. Recent findings in Drosophila provide the tools for dissecting how neurogenesis and neuronal differentiation are modulated by the Drosophila sex-determination regulatory genes to produce nervous system sexual dimorphisms. Here we report studies aimed at illuminating the basis of the sexual dimorphic axonal projection patterns of foreleg gustatory receptor neurons (GRNs): only in males do GRN axons project across the midline of the ventral nerve cord. We show that the sex determination genes fruitless (fru) and doublesex (dsx) both contribute to establishing this sexual dimorphism. Male-specific Fru (Fru(M)) acts in foreleg GRNs to promote midline crossing by their axons, whereas midline crossing is repressed in females by female-specific Dsx (Dsx(F)). In addition, midline crossing by these neurons might be promoted in males by male-specific Dsx (Dsx(M)). Finally, we (1) demonstrate that the roundabout (robo) paralogs also regulate midline crossing by these neurons, and (2) provide evidence that Fru(M) exerts its effect on midline crossing by directly or indirectly regulating Robo signaling.


Assuntos
Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Feminino , Técnicas In Vitro , Masculino , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Caracteres Sexuais , Fatores de Transcrição/genética , Proteínas Roundabout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...