Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Endod J ; 51(8): 889-900, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29377189

RESUMO

AIM: To investigate the relationship between diabetes mellitus and local/systemic effects of both grey and white mineral trioxide aggregate (MTA) Angelus on bone marker expression. METHODOLOGY: Wistar rats were divided into two groups: healthy and diabetic (Alloxan induced), which were further divided into three subgroups (control, GMTA Angelus and WMTA Angelus). Polyethylene tubes filled with MTA materials or empty tubes were implanted in dorsal connective tissue. On days 7 and 30, blood samples were collected for calcium, phosphorus and ALP measurement. The animals were euthanized; implanted tubes were removed and processed for immunohistochemical analysis of osteocalcin (OCN) and osteopontin (OPN). Kruskal-Wallis followed by Dunn's multiple comparison test was performed for nonparametric data, and anova followed by Tukey's test for parametric data. RESULTS: No difference in systemic serum calcium levels between both groups was observed. On day 7, serum phosphorus levels within the WMTA healthy group were higher than that of the diabetic group. On day 30, healthy rats exhibited lower phosphorus levels than diabetic ones. At both time points, the diabetic group was associated with more ALP activity than the healthy group. Immunohistochemical analyses of the healthy group revealed OCN- and OPN-positive cells in the presence of both MTA materials. However, under diabetic conditions, both OCN and OPN were absent. CONCLUSION: Both MTA materials were associated with an increase in serum calcium, phosphorus and ALP, suggesting a potential systemic effect, along with triggered differentiation of OCN- and OPN-positive cells. Moreover, in diabetic conditions, an inhibitory effect on MTA-induced differentiation of OCN- and OPN-positive cells was detected.


Assuntos
Compostos de Alumínio/análise , Compostos de Cálcio/análise , Diabetes Mellitus Experimental/metabolismo , Óxidos/análise , Silicatos/análise , Animais , Diabetes Mellitus Experimental/sangue , Combinação de Medicamentos , Imuno-Histoquímica , Osteocalcina/análise , Osteopontina/análise , Ratos , Ratos Wistar
2.
Scand J Med Sci Sports ; 28(2): 425-435, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28649743

RESUMO

We investigated the skeletal muscle adaptation to l-arginine supplementation prior to a single session of resistance exercise (RE) during the early phase of muscle repair. Wistar rats were randomly assigned into non-exercised (Control), RE plus vehicle (RE); RE plus l-arginine (RE+L-arg) and RE plus aminoguanidine (RE+AG) groups. Animals received four doses of either vehicle (0.9% NaCl), l-arg (1 g/b.w.), or AG (iNOS inhibitor) (50 mg/b.w.). The animals performed a single RE session until the concentric failure (ladder climbing; 80% overload) and the skeletal muscles were harvested at 0, 8, 24, and 48 hours post-RE. The RE resulted in increased neutrophil infiltrate (24 hours post-RE) (3621 vs 11852; P<.0001) associated with enhanced TNF-α (819.49 vs 357.02; P<.005) and IL-6 (3.84 vs 1.08; P<.0001). Prior, l-arginine supplementation attenuates neutrophil infiltration (5622; P<.0001), and also TNF-α (506.01; P<.05) and IL-6 (2.51, P<.05) levels. AG pretreatment mediated an inhibition of iNOS levels similar to levels found in RE group. RE animals displayed increased of atrogin-1 (1.9 fold) and MuRF-1 (3.2 fold) mRNA levels, reversed by l-arg supplementation [atrogin-1 (0.6 fold; P<.001); MuRF-1 (0.8-fold; P<.001)] at 24 hours post-RE. MyoD up-regulated levels were restricted to l-arg treated animals at 24 hours (2.8 vs 1.5 fold; P<.005) and 48 hours post-RE (2.4 vs 1.1 fold; P<.001). AG pretreatment reversed these processes at 24 hours [atrogin-1 (2.1 fold; P<.0001); MuRF-1 (2.5 fold; P<.0001); MyoD (1.4 fold)]. l-arginine supplementation seems to attenuate the resolution of RE-induced muscle inflammation and up-regulates MyoD expression during the early phase of muscle repair.


Assuntos
Arginina/administração & dosagem , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica , Animais , Guanidinas/administração & dosagem , Inflamação/genética , Interleucina-6/metabolismo , Masculino , Proteínas Musculares/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Peroxidase/metabolismo , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...