Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(13): 14963-14976, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32062775

RESUMO

In this work, three novel catalysts were prepared by 2.5, 5.0, and 10.0 wt.% facile impregnation with an iron and molybdenum mixed oxide (Fe/Mo) on an aluminum pillared clay (Al-PILC) support. These materials were characterized by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), temperature programed reduction (TPR), and nitrogen (N2) physisorption at 77 K. Characterizations indicated that the metal particles were dispersed on the surface of the three catalysts, and the interlayer d001 spacing of the pillared material remained unchanged after the impregnation process. The catalytic tests showed good results for DBT oxidation using the synthesized catalysts, with high turnover frequency (TOF) values, particularly for the material with 5.0 wt.% Fe/Mo. Theoretical calculations were carried out at the density functional theory (DFT) level, to investigate how the DBT molecules were adsorbed onto the surface of the mixed oxide. The lowest energy proposal was obtained when both Fe and Mo were present at the active sites, indicating a possible synergistic effect of the metals on catalyst activity. Reuse tests indicated that the catalysts could be employed effectively for up to 3 cycles in a row, then a decrease in activity occurred and the active sites needed to be regenerated.


Assuntos
Argila , Molibdênio , Alumínio , Catálise , Gasolina , Ferro , Estresse Oxidativo , Óxidos , Tiofenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA