Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurogenet ; 28(3-4): 374-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24766346

RESUMO

The receptor mechanism for color vision has been extensively studied. In contrast, the circuit(s) that transform(s) photoreceptor signals into color percepts to guide behavior remain(s) poorly characterized. Using intersectional genetics to inactivate identified subsets of neurons, we have uncovered the first-order interneurons that are functionally required for hue discrimination in Drosophila. We developed a novel aversive operant conditioning assay for intensity-independent color discrimination (true color vision) in Drosophila. Single flying flies are magnetically tethered in an arena surrounded by blue and green LEDs (light-emitting diodes). The flies' optomotor response is used to determine the blue-green isoluminant intensity. Flies are then conditioned to discriminate between equiluminant blue or green stimuli. Wild-type flies are successfully trained in this paradigm when conditioned to avoid either blue or green. Functional color entrainment requires the function of the narrow-spectrum photoreceptors R8 and/or R7, and is within a limited range, intensity independent, suggesting that it is mediated by a color vision system. The medulla projection neurons, Tm5a/b/c and Tm20, receive direct inputs from R7 or R8 photoreceptors and indirect input from the broad-spectrum photoreceptors R1-R6 via the lamina neuron L3. Genetically inactivating these four classes of medulla projection neurons abolished color learning. However, inactivation of subsets of these neurons is insufficient to block color learning, suggesting that true color vision is mediated by multiple redundant pathways. We hypothesize that flies represent color along multiple axes at the first synapse in the fly visual system. The apparent redundancy in learned color discrimination sharply contrasts with innate ultraviolet (UV) spectral preference, which is dominated by a single pathway from the amacrine neuron Dm8 to the Tm5c projection neurons.


Assuntos
Visão de Cores/fisiologia , Bulbo/fisiologia , Neurônios/fisiologia , Vias Visuais/fisiologia , Animais , Discriminação Psicológica/fisiologia , Drosophila/fisiologia , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/fisiologia , Sinapses/fisiologia
2.
Neuron ; 81(3): 603-615, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24507194

RESUMO

Many visual animals have innate preferences for particular wavelengths of light, which can be modified by learning. Drosophila's preference for UV over visible light requires UV-sensing R7 photoreceptors and specific wide-field amacrine neurons called Dm8. Here we identify three types of medulla projection neurons downstream of R7 and Dm8 and show that selectively inactivating one of them (Tm5c) abolishes UV preference. Using a modified GRASP method to probe synaptic connections at the single-cell level, we reveal that each Dm8 neuron forms multiple synaptic contacts with Tm5c in the center of Dm8's dendritic field but sparse connections in the periphery. By single-cell transcript profiling and RNAi-mediated knockdown, we determine that Tm5c uses the kainate receptor Clumsy to receive excitatory glutamate input from Dm8. We conclude that R7s→Dm8→Tm5c form a hard-wired glutamatergic circuit that mediates UV preference by pooling ∼16 R7 signals for transfer to the lobula, a higher visual center.


Assuntos
Visão de Cores/fisiologia , Transdução de Sinal Luminoso/fisiologia , Rede Nervosa/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Receptores de Glutamato/metabolismo , Vias Visuais/citologia , Análise de Variância , Animais , Animais Geneticamente Modificados , Mapeamento Encefálico , Visão de Cores/efeitos da radiação , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Transdução de Sinal Luminoso/efeitos da radiação , Rede Nervosa/efeitos da radiação , Optometria , Células Fotorreceptoras de Invertebrados/classificação , Interferência de RNA/fisiologia , Receptores de Glutamato/genética , Raios Ultravioleta , Vias Visuais/fisiologia , Vias Visuais/efeitos da radiação
3.
Dev Neurobiol ; 73(2): 107-26, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22648855

RESUMO

In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry.


Assuntos
Proteínas de Drosophila/biossíntese , Drosophila/fisiologia , Interneurônios/metabolismo , Condutos Olfatórios/crescimento & desenvolvimento , Fatores de Transcrição SOX/biossíntese , Alelos , Animais , Antenas de Artrópodes/inervação , Antenas de Artrópodes/fisiologia , Mapeamento Cromossômico , Proteínas de Drosophila/genética , Deleção de Genes , Marcadores Genéticos , Imuno-Histoquímica , Mutagênese Insercional , Mutação/genética , Mutação/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Sistema Nervoso Parassimpático/citologia , Sistema Nervoso Parassimpático/crescimento & desenvolvimento , Fatores de Transcrição SOX/genética , Ácido gama-Aminobutírico/fisiologia
4.
Dev Neurobiol ; 71(12): 1286-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21538922

RESUMO

Both insect and vertebrate visual circuits are organized into orderly arrays of columnar and layered synaptic units that correspond to the array of photoreceptors in the eye. Recent genetic studies in Drosophila have yielded insights into the molecular and cellular mechanisms that pattern the layers and columns and establish specific connections within the synaptic units. A sequence of inductive events and complex cellular interactions coordinates the assembly of visual circuits. Photoreceptor-derived ligands, such as hedgehog and Jelly-Belly, induce target development and expression of specific adhesion molecules, which in turn serve as guidance cues for photoreceptor axons. Afferents are directed to specific layers by adhesive afferent-target interactions mediated by leucine-rich repeat proteins and cadherins, which are restricted spatially and/or modulated dynamically. Afferents are restricted to their topographically appropriate columns by repulsive interactions between afferents and by autocrine activin signaling. Finally, Dscam-mediated repulsive interactions between target neuron dendrites ensure appropriate combinations of postsynaptic elements at synapses. Essentially, all these Drosophila molecules have vertebrate homologs, some of which are known to carry out analogous functions. Thus, the studies of Drosophila visual circuit development would shed light on neural circuit assembly in general.


Assuntos
Drosophila/anatomia & histologia , Rede Nervosa/fisiologia , Sinapses/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia , Animais , Drosophila/fisiologia
5.
Dev Dyn ; 235(10): 2828-35, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16894603

RESUMO

Members of the Sox family of DNA-binding HMG domain proteins have been shown to regulate gene transcription in a wide range of developmental processes, including sex determination, neurogenesis, and chondrogenesis. However, little is known about their potential functions in developing germline tissues. In Drosophila, the Sox protein Dichaete (a.k.a., Fish-hook) is a member of the SoxB subgroup whose HMG domain shares strong sequence similarity to that of vertebrate Sox2. Dichaete exhibits dynamic expression in embryonic and larval stages and has pleiotropic functions in a variety of tissues. In this study, we extend analyses of Dichaete function and show that expression of Dichaete protein is detected in the developing oocyte during early to mid stages of oogenesis. Strikingly, Dichaete exhibits cytoplasmic distribution and is not detected in the oocyte nucleus. Germline mosaic analyses revealed that the Dichaete gene has maternal functions that influence dorsal/ventral patterning of the egg chamber. Dichaete mutant eggs exhibit defects in formation of the dorsal appendages, differentiation of dorsal/anterior follicle cells, and mislocalization of Gurken protein and gurken mRNA. Dichaete protein was shown to possess RNA-binding capabilities, suggesting a direct post-transcriptional role in regulating RNA functions.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Grupo de Alta Mobilidade/genética , Oogênese/genética , Fatores de Transcrição/genética , Animais , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/fisiologia , Drosophila/embriologia , Drosophila/ultraestrutura , Proteínas de Drosophila/análise , Proteínas de Drosophila/fisiologia , Feminino , Proteínas de Grupo de Alta Mobilidade/análise , Proteínas de Grupo de Alta Mobilidade/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Microscopia Eletrônica de Varredura , Oogênese/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX , Fatores de Transcrição/análise , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...