Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Curr Pharm Des ; 30(10): 742-756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425105

RESUMO

Lipid metabolism plays an essential role in the pathogenesis of cardiovascular and metabolic diseases. Cholesteryl ester transfer protein (CETP) is a crucial glycoprotein involved in lipid metabolism by transferring cholesteryl esters (CE) and triglycerides (TG) between plasma lipoproteins. CETP activity results in reduced HDL-C and increased VLDL- and LDL-C concentrations, thus increasing the risk of cardiovascular and metabolic diseases. In this review, we discuss the structure of CETP and its mechanism of action. Furthermore, we focus on recent experiments on animal CETP-expressing models, deciphering the regulation and functions of CETP in various genetic backgrounds and interaction with different external factors. Finally, we discuss recent publications revealing the association of CETP single nucleotide polymorphisms (SNPs) with the risk of cardiovascular and metabolic diseases, lifestyle factors, diet and therapeutic interventions. While CETP SNPs can be used as effective diagnostic markers, diet, lifestyle, gender and ethnic specificity should also be considered for effective treatment.


Assuntos
Doenças Cardiovasculares , Proteínas de Transferência de Ésteres de Colesterol , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Humanos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/genética , Animais , Polimorfismo de Nucleotídeo Único , Lipídeos/sangue , Metabolismo dos Lipídeos/genética
2.
Front Biosci (Schol Ed) ; 16(1): 5, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38538341

RESUMO

The pathogenesis of type 2 diabetes mellitus (T2DM) is based on the development of insulin resistance, which is a disruption to the ability of the tissues to bind to insulin, leading to a general metabolic disorder. Mitochondria are the main participants in cellular energy metabolism, meaning their dysfunction is associated with the development of insulin resistance in T2DM. Mitochondrial function is affected by insulin resistance in various tissues, including skeletal muscle and the liver, which greatly influence glucose homeostasis throughout the body. This review studies mitochondrial dysfunction in T2DM and its impact on disease progression. In addition, it considers the causes underlying the development of mitochondrial dysfunction in T2DM, including mutations in the mitochondrial genome, mitochondrial DNA methylation, and other epigenetic influences, as well as the impact of impaired mitochondrial membrane potential. New therapeutic strategies for diabetes that have been developed to target the mitochondria will also be presented.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Doenças Metabólicas , Doenças Mitocondriais , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Metabolismo Energético , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia
4.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631065

RESUMO

Since inflammatory bowel diseases (IBDs) are chronic, the development of new effective therapeutics to combat them does not lose relevance. Oxidative stress is one of the main pathological processes that determines the progression of IBD. In this regard, antioxidant therapy seems to be a promising approach. The role of oxidative stress in the development and progression of IBD is considered in detail in this review. The main cause of oxidative stress in IBD is an inadequate response of leukocytes to dysbiosis and food components in the intestine. Passage of immune cells through the intestinal barrier leads to increased ROS concentration and the pathological consequences of exposure to oxidative stress based on the development of inflammation and impaired intestinal permeability. To combat oxidative stress in IBD, several promising natural (curcumin, resveratrol, quercetin, and melatonin) and artificial antioxidants (N-acetylcysteine (NAC) and artificial superoxide dismutase (aSOD)) that had been shown to be effective in a number of clinical trials have been proposed. Their mechanisms of action on pathological events in IBD and clinical manifestations from their impact have been determined. The prospects for the use of other antioxidants that have not yet been tested in the treatment of IBD, but have the properties of potential therapeutic candidates, have been also considered.

5.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570643

RESUMO

Essential oils (EOs) are complex secondary metabolites identified in many plant species. Plant-derived EOs have been widely used in traditional medicine for centuries for their health-beneficial effects. Some EOs and their active ingredients have been reported to improve the cardiovascular system, in particular to provide an anti-atherosclerotic effect. The objective of this review is to highlight the recent research investigating the anti-inflammatory, anti-oxidative and lipid-lowering properties of plant-derived EOs and discuss their mechanisms of action. Also, recent clinical trials exploring anti-inflammatory and anti-oxidative activities of EOs are discussed. Future research on EOs has the potential to identify new bioactive compounds and invent new effective agents for treatment of atherosclerosis and related diseases such as diabetes, metabolic syndrome and obesity.


Assuntos
Aterosclerose , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos de Plantas/farmacologia , Aterosclerose/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
6.
Biomedicines ; 11(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37509649

RESUMO

Selenium is an essential trace element that is essential for various metabolic processes, protection from oxidative stress and proper functioning of the cardiovascular system. Se deficiency has long been associated with multiple cardiovascular diseases, including endemic Keshan's disease, common heart failure, coronary heart disease, myocardial infarction and atherosclerosis. Through selenoenzymes and selenoproteins, Se is involved in numerous crucial processes, such as redox homeostasis regulation, oxidative stress, calcium flux and thyroid hormone metabolism; an unbalanced Se supply may disrupt these processes. In this review, we focus on the importance of Se in cardiovascular health and provide updated information on the role of Se in specific processes involved in the development and pathogenesis of atherosclerosis (oxidative stress, inflammation, endothelial dysfunction, vascular calcification and vascular cell apoptosis). We also discuss recent randomised trials investigating Se supplementation as a potential therapeutic and preventive agent for atherosclerosis treatment.

7.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513323

RESUMO

Atherosclerosis is the major cause of cardiovascular-disease-related death worldwide, resulting from the subendothelial accumulation of lipoprotein-derived cholesterol, ultimately leading to chronic inflammation and the formation of clinically significant atherosclerotic plaques. Oligosaccharides have been widely used in biomedical research and therapy, including tissue engineering, wound healing, and drug delivery. Moreover, oligosaccharides have been consumed by humans for centuries, and are cheap, and available in large amounts. Given the constantly increasing number of obesity, diabetes, and hyperlipidaemia cases, there is an urgent need for novel therapeutics that can economically and effectively slow the progression of atherosclerosis. In this review, we address the current state of knowledge in oligosaccharides research, and provide an update of the recent in vitro and in vivo experiments that precede clinical studies. The application of oligosaccharides could help to eliminate the residual risk after the application of other cholesterol-lowering medicines, and provide new therapeutic opportunities to reduce the associated burden of premature deaths because of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/tratamento farmacológico , Colesterol , Inflamação , Oligossacarídeos/uso terapêutico
8.
Biomedicines ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831136

RESUMO

Pericytes are perivascular multipotent cells wrapping microvascular capillaries, where they support vasculature functioning, participate in tissue regeneration, and regulate blood flow. However, recent evidence suggests that in addition to traditionally credited structural function, pericytes also manifest immune properties. In this review, we summarise recent data regarding pericytes' response to different pro-inflammatory stimuli and their involvement in innate immune responses through expression of pattern-recognition receptors. Moreover, pericytes express various adhesion molecules, thus regulating trafficking of immune cells across vessel walls. Additionally, the role of pericytes in modulation of adaptive immunity is discussed. Finally, recent reports have suggested that the interaction with cancer cells evokes immunosuppression function in pericytes, thus facilitating immune evasion and facilitating cancer proliferation and metastasis. However, such complex and multi-faceted cross-talks of pericytes with immune cells also suggest a number of potential pericyte-based therapeutic methods and techniques for cancer immunotherapy and treatment of autoimmune and auto-inflammatory disorders.

9.
Pharmaceutics ; 14(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36559091

RESUMO

Bacterial extracellular membrane nanovesicles (EMNs) are attracting the attention of scientists more and more every year. These formations are involved in the pathogenesis of numerous diseases, among which, of course, the leading role is occupied by infectious diseases, the causative agents of which are a range of Gram-positive and Gram-negative bacteria. A separate field for the study of the role of EMN is cancer. Extracellular membrane nanovesicles nowadays have a practical application as vaccine carriers for immunization against many infectious diseases. At present, the most essential point is their role in stimulating immune response to bacterial infections and tumor cells. The possibility of nanovesicles' practical use in several disease treatments is being evaluated. In our review, we listed diseases, focusing on their multitude and diversity, for which EMNs are essential, and also considered in detail the possibilities of using EMNs in the therapy and prevention of various pathologies.

10.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361513

RESUMO

The prevalence of multiple sclerosis and the complexity of its etiology and pathogenesis require further study of the factors underlying the progression of this disease. The prominent role of mitochondria in neurons makes this organelle a vulnerable target for CNS diseases. The purpose of this review is to consider the role of mitochondrial dysfunction in the pathogenesis of multiple sclerosis, as well as to propose new promising therapeutic strategies aimed at restoring mitochondrial function in multiple sclerosis.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Mitocôndrias/patologia , Neurônios/metabolismo
11.
Pharmaceutics ; 14(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432705

RESUMO

Impaired mitophagy is one of the hallmarks of the pathogenesis of Parkinson's disease, which highlights the importance of the proper functioning of mitochondria, as well as the processes of mitochondrial dynamics for the functioning of dopaminergic neurons. At the same time, the main factors leading to disruption of mitophagy in Parkinson's disease are mutations in the Pink1 and Parkin enzymes. Based on the characterized mutant forms, the marked cellular localization, and the level of expression in neurons, these proteins can be considered promising targets for the development of drugs for Parkinson's therapy. This review will consider such class of drug compounds as mitophagy activators and these drugs in the treatment of Parkinson's disease.

12.
Biomed Pharmacother ; 156: 113928, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411618

RESUMO

Pericytes are mural vascular cells covering microvascular capillaries, where they contribute to the formation, maturation, maintenance, stabilisation and remodelling of vasculature. They actively interact and communicate with other cells to maintain the capillary structural integrity, vascular permeability and blood flow. Pericytes are crucial participants in the physiological and pathological processes of cardiovascular disease. In this review, we summarise recent data regarding pericyte metabolism, trans-differentiation, angiogenesis and immunomodulation in connection with different cardiovascular pathologies. Further, we discuss an application of pericytes as a new cell therapy approach to treat coronary artery disease, congenital heart disease, atherosclerotic plaques calcification and calcific valvular heart disease in different in vivo animal models and in vitro studies. Also, we discuss different methods and pharmacological therapies for CVDs treatment with pericyte-mediated effects. Finally, we present a comprehensive overview of the role of pericytes in CVDs and as a pharmacological target for different novel drugs and techniques and highlight the potential application of pericytes to treat CVDs.


Assuntos
Doenças Cardiovasculares , Pericitos , Animais , Pericitos/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Capilares , Neovascularização Patológica/metabolismo , Diferenciação Celular
13.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232962

RESUMO

Pericytes are multipotent mesenchymal stromal cells playing an active role in angiogenesis, vessel stabilisation, maturation, remodelling, blood flow regulation and are able to trans-differentiate into other cells of the mesenchymal lineage. In this review, we summarised recent data demonstrating that pericytes play a key role in the pathogenesis and development of atherosclerosis (AS). Pericytes are involved in lipid accumulation, inflammation, growth, and vascularization of the atherosclerotic plaque. Decreased pericyte coverage, endothelial and pericyte dysfunction is associated with intraplaque angiogenesis and haemorrhage, calcification and cholesterol clefts deposition. At the same time, pericytes can be used as a novel therapeutic target to promote vessel maturity and stability, thus reducing plaque vulnerability. Finally, we discuss recent studies exploring effective AS treatments with pericyte-mediated anti-atherosclerotic, anti-inflammatory and anti-apoptotic effects.


Assuntos
Aterosclerose , Placa Aterosclerótica , Aterosclerose/patologia , Aterosclerose/terapia , Colesterol , Humanos , Lipídeos , Neovascularização Patológica/patologia , Pericitos/patologia , Placa Aterosclerótica/patologia
14.
Biomedicines ; 10(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36289901

RESUMO

Lipid metabolism alterations are an important component of the pathogenesis of atherosclerosis. However, it is now clear that the atherogenesis process involves more than one mechanism, and more than one condition can predispose this condition. Multiple risk factors contribute to the atherosclerosis initiation and define its course. Familial hypercholesterolaemia is a disorder of lipid metabolism that often leads to atherosclerosis development. As is clear from the disease name, the hallmark is the increased levels of low-density lipoprotein cholesterol (LDL-C) in blood. This creates favourable conditions for atherogenesis. In this review, we briefly described the familial hypercholesterolaemia and summarized data on the relationship between familial hypercholesterolaemia and atherosclerosis.

15.
Front Cardiovasc Med ; 9: 959285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072873

RESUMO

Atherosclerosis is a predecessor of numerous cardiovascular diseases (CVD), which often lead to morbidity and mortality. Despite the knowledge of the pathogenesis of atherosclerosis, an essential gap in our understanding is the exact trigger mechanism. A wide range of risk factors have been discovered; however, a majority of them are too general to clarify the launching mechanism of atherogenesis. Some risk factors are permanent (age, gender, genetic heritage) and others can be modified [tobacco smoking, physical inactivity, poor nutrition, high blood pressure, type 2 diabetes (T2D), dyslipidemia, and obesity]. All of them have to be taken into account. In the scope of this review, our attention is focused on hypertension, which is considered the most widespread among all modifiable risk factors for atherosclerosis development. Moreover, high blood pressure is the most investigated risk factor. The purpose of this review is to summarize the data on hypertension as a risk factor for atherosclerosis development and the risk assessment.

16.
Biomedicines ; 10(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35203661

RESUMO

Macrophages are the key inflammatory cell type involved in all stages of atherosclerosis development and progression, as demonstrated by numerous studies. Correspondingly, macrophages are currently regarded as a promising therapeutic target for the development of new treatment approaches. The macrophage population is heterogeneous and dynamic, as these cells can switch between a number of distinct functional states with pro- and anti-atherogenic activity in response to various stimuli. An atherosclerotic plaque microenvironment defined by cytokine levels, cell-to-cell interactions, lipid accumulation, hypoxia, neoangiogenesis, and intraplaque haemorrhage may guide local macrophage polarization processes within the lesion. In this review, we discuss known functional phenotypes of intraplaque macrophages and their distinct contribution to ahteroinflammation.

17.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162983

RESUMO

Distribution of different types of atherosclerotic lesions in the arterial wall is not diffuse, but is characterized by mosaicism. The causes of such distribution remain to be established. At the early stages of atherogenesis, low-density lipoprotein (LDL) particles and immune cells penetrate into the intimal layer of the arterial wall through the endothelium. In adult humans, the luminal surface of the arterial wall is a heterogeneous monolayer of cells with varying morphology including typical endothelial cells (ECs) and multinucleated variant endothelial cells (MVECs). We hypothesized that distribution of MVECs in the endothelial monolayer can be related to the distribution pattern of early atherosclerotic lesions. We obtained en face preparations of intact adult (22-59 years old) aortic wall sections that allowed us to study the endothelial monolayer and the subendothelial layer. We compared the distribution of MVECs in the endothelial monolayer with the localization of early atherosclerotic lesions in the subendothelial layer, which were characterized by lipid accumulation and immune cell recruitment. In primary culture, MVECs demonstrated increased phagocytic activity compared to mononuclear ECs. Moreover, we have shown that unaffected aortic intima contained associates formed as a result of aggregation and/or fusion of LDL particles that are non-randomly distributed. This indicated that MVECs may be involved in the accumulation of LDL in the subendothelial layer through increased transcytosis. Interaction of LDL with subendothelial cells of human aorta in primary culture increased their adhesive properties toward circulating immune cells. Study of unaffected aortic intima revealed non-random distribution of leukocytes in the subendothelial layer and increased localization of CD45+ leukocytes in the subendothelial layer adjacent to MVECs. Together, our observations indicate that MVECs may be responsible for the distribution of atherosclerotic lesions in the arterial wall by participating in LDL internalization and immune cell recruitment.


Assuntos
Aterosclerose , Células Endoteliais , Adulto , Aorta/patologia , Aterosclerose/patologia , Células Endoteliais/patologia , Endotélio Vascular/patologia , Humanos , Lipoproteínas LDL , Linfócitos/patologia , Pessoa de Meia-Idade , Mosaicismo , Adulto Jovem
18.
Biomedicines ; 8(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664349

RESUMO

Atherosclerosis is a serious disorder, with numerous potential complications such as cardiovascular disease, ischemic stroke, and myocardial infarction. The origin of atherosclerosis is related to chronic inflammation, lipid metabolism alterations, and oxidative stress. Inflammasomes are the cytoplasmic multiprotein complex triggering the activation of inflammatory response. NLRP3 inflammasomes have a specific activation pathway that involves numerous stimuli, including a wide range of PAMPs and DAMPs. Recent studies of atherosclerotic pathology are focused on the mitochondria that appear to be a promising target for therapeutic approach development. Mitochondria are the main source of reactive oxygen species (ROS) associated with oxidative stress. It was previously shown that NLRP3 inflammasome activation results in mitochondrial damage, but the exact mechanisms of this need to be specified. In this review, we focused on the features of NLRP3 inflammasomes and their significance for atherosclerosis, especially concerning mitochondria.

19.
Cells ; 9(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121535

RESUMO

Atherosclerosis is associated with acute cardiovascular conditions, such as ischemic heart disease, myocardial infarction, and stroke, and is the leading cause of morbidity and mortality worldwide. Our understanding of atherosclerosis and the processes triggering its initiation is constantly improving, and, during the last few decades, many pathological processes related to this disease have been investigated in detail. For example, atherosclerosis has been considered to be a chronic inflammation triggered by the injury of the arterial wall. However, recent works showed that atherogenesis is a more complex process involving not only the immune system, but also resident cells of the vessel wall, genetic factors, altered hemodynamics, and changes in lipid metabolism. In this review, we focus on foam cells that are crucial for atherosclerosis lesion formation. It has been demonstrated that the formation of foam cells is induced by modified low-density lipoprotein (LDL). The beneficial effects of the majority of therapeutic strategies with generalized action, such as the use of anti-inflammatory drugs or antioxidants, were not confirmed by clinical studies. However, the experimental therapies targeting certain stages of atherosclerosis, among which are lipid accumulation, were shown to be more effective. This emphasizes the relevance of future detailed investigation of atherogenesis and the importance of new therapies development.


Assuntos
Aterosclerose/imunologia , Doenças Cardiovasculares/imunologia , Células Espumosas/imunologia , Doenças Cardiovasculares/patologia , Humanos , Lipoproteínas LDL/metabolismo , Transdução de Sinais
20.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012706

RESUMO

Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL. It was found that most of the identified master regulators were related to the regulation of the inflammatory immune response, but not to lipid metabolism. A possible explanation for this unexpected result is a stimulation of the phagocytic activity of macrophages by modified LDL particle associates that have a relatively large size. In the current study, we investigated gene regulation in macrophages using transcriptome analysis to test the hypothesis that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. We identified genes that were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads (inert phagocytosis stimulators). Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. The obtained results indicated that pro-inflammatory response to phagocytosis stimulation precedes the accumulation of intracellular lipids and possibly contributes to the formation of foam cells. In this way, the currently recognized hypothesis that the accumulation of lipids triggers the pro-inflammatory response was not confirmed. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. Additionally, the knock-down effect of five master regulators, such as IL15, EIF2AK3, F2RL1, TSPYL2, and ANXA1, on intracellular lipid accumulation was tested. We knocked down these genes in primary macrophages derived from human monocytes. The addition of atherogenic naturally occurring LDL caused a significant accumulation of cholesterol in the control cells. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages. The knock-down of the ANXA1 gene caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. The results obtained allowed us to explain in which way the inflammatory response and the accumulation of cholesterol are related confirming our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response.


Assuntos
Células Espumosas/metabolismo , Células Espumosas/patologia , Lipoproteínas LDL/metabolismo , Fagocitose , Biomarcadores , Células Espumosas/imunologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imunidade Inata , Metabolismo dos Lipídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Oxirredução , Fagocitose/genética , Fagocitose/imunologia , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...