Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 96(1-1): 012158, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347267

RESUMO

The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.

2.
Phys Rev E ; 93(6): 062144, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415245

RESUMO

The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052106, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493739

RESUMO

We study the N-step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 053305, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493902

RESUMO

We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.

5.
Comput Biol Chem ; 53 Pt A: 26-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25213853

RESUMO

We analyze the structure of DNA molecules of different organisms by using the additive Markov chain approach. Transforming nucleotide sequences into binary strings, we perform statistical analysis of the corresponding "texts". We develop the theory of N-step additive binary stationary ergodic Markov chains and analyze their differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain by means of the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses two point correlators instead of probability of block occurring, it makes possible to calculate the entropy of subsequences at much longer distances than with the use of the standard methods. We utilize the obtained analytical result for numerical evaluation of the entropy of coarse-grained DNA texts. We believe that the entropy study can be used for biological classification of living species.


Assuntos
Bacillus subtilis/genética , Mapeamento Cromossômico/estatística & dados numéricos , Drosophila melanogaster/genética , Genoma , Cadeias de Markov , Animais , Sequência de Bases , Entropia , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...