Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 2(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744479

RESUMO

Antibiotic resistance evolves rapidly in response to drug selection, but it can also persist at appreciable levels even after the removal of the antibiotic. This suggests that many resistant strains can both be resistant and have high fitness in the absence of antibiotics. To explore the conditions under which high-fitness, resistant strains evolve and the genetic changes responsible, we used a combination of experimental evolution and whole-genome sequencing to track the acquisition of ciprofloxacin resistance in the opportunistic pathogen Pseudomonas aeruginosa under conditions of constant and fluctuating antibiotic delivery patterns. We found that high-fitness, resistant strains evolved readily under fluctuating but not constant antibiotic conditions and that their evolution was underlain by a trade-off between resistance and fitness. Whole-genome sequencing of evolved isolates revealed that resistance was gained through mutations in known resistance genes and that second-site mutations generally compensated for costs associated with resistance in the fluctuating treatment, leading to the evolution of cost-free resistance. Our results suggest that current therapies involving intermittent administration of antibiotics are contributing to the maintenance of antibiotic resistance at high levels in clinical settings. IMPORTANCE Antibiotic resistance is a global problem that greatly impacts human health. How resistance persists, even in the absence of antibiotic treatment, is thus a public health problem of utmost importance. In this study, we explored the antibiotic treatment conditions under which cost-free resistance arises, using experimental evolution of the bacterium Pseudomonas aeruginosa and the quinolone antibiotic ciprofloxacin. We found that intermittent antibiotic treatment led to the evolution of cost-free resistance and demonstrate that compensatory evolution is the mechanism responsible for cost-free resistance. Our results suggest that discontinuous administration of antibiotic may be contributing to the high levels of antibiotic resistance currently found worldwide.

2.
Evol Appl ; 8(3): 273-83, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25861385

RESUMO

Antibiotic resistance is increasing in pathogenic microbial populations and is thus a major threat to public health. The fate of a resistance mutation in pathogen populations is determined in part by its fitness. Mutations that suffer little or no fitness cost are more likely to persist in the absence of antibiotic treatment. In this review, we performed a meta-analysis to investigate the fitness costs associated with single mutational events that confer resistance. Generally, these mutations were costly, although several drug classes and species of bacteria on average did not show a cost. Further investigations into the rate and fitness values of compensatory mutations that alleviate the costs of resistance will help us to better understand both the emergence and management of antibiotic resistance in clinical settings.

3.
Mol Ecol ; 21(9): 2058-77, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22332770

RESUMO

Experimental evolution (EE) combined with whole-genome sequencing (WGS) has become a compelling approach to study the fundamental mechanisms and processes that drive evolution. Most EE-WGS studies published to date have used microbes, owing to their ease of propagation and manipulation in the laboratory and relatively small genome sizes. These experiments are particularly suited to answer long-standing questions such as: How many mutations underlie adaptive evolution, and how are they distributed across the genome and through time? Are there general rules or principles governing which genes contribute to adaptation, and are certain kinds of genes more likely to be targets than others? How common is epistasis among adaptive mutations, and what does this reveal about the variety of genetic routes to adaptation? How common is parallel evolution, where the same mutations evolve repeatedly and independently in response to similar selective pressures? Here, we summarize the significant findings of this body of work, identify important emerging trends and propose promising directions for future research. We also outline an example of a computational pipeline for use in EE-WGS studies, based on freely available bioinformatics tools.


Assuntos
Evolução Molecular Direcionada , Genoma Bacteriano , Genoma Fúngico , Análise de Sequência de DNA , Bactérias/genética , Mapeamento Cromossômico , Cromossomos Bacterianos , Cromossomos Fúngicos , Evolução Molecular , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala
4.
Evolution ; 65(11): 3048-59, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22023573

RESUMO

The repeatability of adaptive evolution depends on the ruggedness of the underlying adaptive landscape. We contrasted the relative ruggedness of two adaptive landscapes by measuring the variance in fitness and metabolic phenotype within and among genetically distinct strains of Pseudomonas fluorescens in two environments differing only in the carbon source provided (glucose vs. xylose). Fitness increased in all lines, plateauing in one environment but not the other. The pattern of variance in fitness among replicate lines was unique to the selection environment; it increased over the course of the experiment in xylose but not in glucose. Metabolic phenotypes displayed two results: (1) populations adapted via changes that were distinctive to their selection environment, and (2) endpoint phenotypes were less variable in glucose than in xylose. These results indicate that although the response to selection is highly repeatable at the level of fitness, the underlying genetic routes taken were different for each environment and more variable in xylose. We suggest that this reflects a more rugged adaptive landscape in xylose compared to glucose. Our study demonstrates the utility of using replicate selection lines with different evolutionary starting points to try and quantify the relative ruggedness of adaptive landscapes.


Assuntos
Adaptação Biológica/fisiologia , Evolução Biológica , Meio Ambiente , Aptidão Genética/genética , Fenótipo , Pseudomonas fluorescens/genética , Análise de Variância , Técnicas de Cultura de Células , Genótipo , Glucose/metabolismo , Pseudomonas fluorescens/metabolismo , Seleção Genética , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...