Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Am J Trop Med Hyg ; 110(6): 1191-1197, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38593787

RESUMO

Glucose-6 phosphate dehydrogenase deficiency (G6PDd) was suggested as a risk factor for severe disease in patients with COVID-19. We evaluated clinical outcomes and glucose-6 phosphate dehydrogenase (G6PD) activity during and after illness in patients with COVID-19. This prospective cohort study included adult participants (≥ 18 years old) who had clinical and/or radiological COVID-19 findings or positive reverse transcription-polymerase chain reaction results. Epidemiological and clinical data were extracted from electronic medical records. Glucose-6 phosphate dehydrogenase activity was measured using SD Biosensor STANDARD G6PD® equipment on admission and 1 year after discharge. Samples were genotyped for the three most common single nucleotide polymorphisms for G6PDd in the Brazilian Amazon. Seven hundred fifty-three patients were included, of whom 123 (16.3%) were G6PD deficient. There was no difference between groups regarding the risks of hospitalization (P = 0.740) or invasive mechanical ventilation (P = 0.31), but the risk of death was greater in patients with normal G6PD levels (P = 0.022). Only 29 of 116 participants (25%) carried the African G6PDd genotype. Of 30 participants tested as G6PD deficient during disease, only 11 (36.7%) results agreed 1 year after discharge. In conclusion, this study does not demonstrate an association of G6PDd with severity of COVID-19. Limitations of the test for detecting enzyme levels during COVID-19 illness were demonstrated by genotyping and retesting after the disease period. Care must be taken when screening for G6PDd in patients with acute COVID-19.


Assuntos
COVID-19 , Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , SARS-CoV-2 , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Brasil/epidemiologia , COVID-19/epidemiologia , Genótipo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Hospitalização , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Fatores de Risco , SARS-CoV-2/genética
2.
Sci Rep ; 14(1): 7249, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538661

RESUMO

Malaria is the leading parasitic disease worldwide, with P. vivax being a major challenge for its control. Several studies have indicated metabolomics as a promising tool for combating the disease. The study evaluated plasma metabolomic profiles of patients with recurrent and non-recurrent P. vivax malaria in the Brazilian Amazon. Metabolites extracted from the plasma of P. vivax-infected patients were subjected to LC-MS analysis. Untargeted metabolomics was applied to investigate the metabolic profile of the plasma in the two groups. Overall, 51 recurrent and 59 non-recurrent patients were included in the study. Longitudinal metabolomic analysis revealed 52 and 37 significant metabolite features from the recurrent and non-recurrent participants, respectively. Recurrence was associated with disturbances in eicosanoid metabolism. Comparison between groups suggest alterations in vitamin B6 (pyridoxine) metabolism, tyrosine metabolism, 3-oxo-10-octadecatrienoate ß-oxidation, and alkaloid biosynthesis II. Integrative network analysis revealed enrichment of other metabolic pathways for the recurrent phenotype, including the butanoate metabolism, aspartate and asparagine metabolism, and N-glycan biosynthesis. The metabolites and metabolic pathways predicted in our study suggest potential biomarkers of recurrence and provide insights into targets for antimalarial development against P. vivax.


Assuntos
Antimaláricos , Malária Vivax , Malária , Humanos , Malária Vivax/parasitologia , Metabolômica , Malária/parasitologia , Metaboloma , Antimaláricos/uso terapêutico
5.
Sci Rep ; 14(1): 2049, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267519

RESUMO

The diagnosis of long COVID is troublesome, even when functional limitations are present. Dynapenia is the loss of muscle strength and power production that is not caused by neurologic or muscular diseases, being mostly associated with changes in neurologic function and/or the intrinsic force-generating properties of skeletal muscle, which altogether, may partially explain the limitations seen in long COVID. This study aimed to identify the distribution and possible associations of dynapenia with functional assessments in patients with long COVID. A total of 113 patients with COVID-19 were evaluated by functional assessment 120 days post-acute severe disease. Body composition, respiratory muscle strength, spirometry, six-minute walk test (6MWT, meters), and hand-grip strength (HGS, Kilogram-force) were assessed. Dynapenia was defined as HGS < 30 Kgf (men), and < 20 Kgf (women). Twenty-five (22%) participants were dynapenic, presenting lower muscle mass (p < 0.001), worse forced expiratory volume in the first second (FEV1) (p = 0.0001), lower forced vital capacity (p < 0.001), and inspiratory (p = 0.007) and expiratory (p = 0.002) peek pressures, as well as worse 6MWT performance (p < 0.001). Dynapenia, independently of age, was associated with worse FEV1, maximal expiratory pressure (MEP), and 6MWT, (p < 0.001) outcomes. Patients with dynapenia had higher intensive care unit (ICU) admission rates (p = 0.01) and need for invasive mechanical ventilation (p = 0.007) during hospitalization. The HGS is a simple, reliable, and low-cost measurement that can be performed in outpatient clinics in low- and middle-income countries. Thus, HGS may be used as a proxy indicator of functional impairment in this population.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Masculino , Humanos , Feminino , Força da Mão , Instituições de Assistência Ambulatorial , Composição Corporal
6.
Malar J ; 22(1): 361, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012686

RESUMO

BACKGROUND: Plasmodium vivax is the main species responsible for human malaria in Brazil, and one of its manifestations is splenic malaria, though there are still challenges in its diagnosis. The present study aimed to standardize Plasmodium sp. DNA extraction from histological slices of spleen and diagnosis using real-time qPCR. METHODS: This study performed a microtomy of a paraffin-embedded spleen as a positive control for P. vivax from a patient who had been previously diagnosed with the parasite. The sample was deparaffinized with xylol and ethanol, then DNA extraction was performed with two commercial kits. qPCR was carried out with the Taqman system for detection of Plasmodium sp. and was made species-specific using PvmtCOX1 gene. From 2015 to 2019, 200 spleen samples were obtained from trauma patients subjected to splenectomy in Manaus, Amazonas. All the samples were tested for cell-free human DNA (cfDNA). RESULTS: The deparaffinization and the Plasmodium vivax DNA extraction method was successfully standardized, and the control sample was positive for P. vivax. Of the 200 samples, all qPCRs were negative, but they were positive for human PCR. CONCLUSION: Paraffinization is practical and efficient for the preservation of samples, but the formation of bonds between proteins and DNA makes extraction difficult. Despite this, in this study, it was possible to standardize a method of DNA extraction for detecting P. vivax.


Assuntos
Malária Vivax , Malária , Humanos , Baço , Malária/diagnóstico , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , Plasmodium vivax/genética , DNA , Padrões de Referência , Plasmodium falciparum/genética
7.
Malar J ; 22(1): 337, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936198

RESUMO

BACKGROUND: Reducing mosquito abundance or interfering with its ability to support the parasite cycle can help to interrupt malaria in areas of significant risk of malaria transmission. Fluralaner is a safe and effective drug for veterinary use indicated for the treatment against fleas and ticks which acts as an antagonist of chloride ion channels mediated by γ-aminobutyric acid (GABA), preventing the entry of these ions into the postsynaptic neuron, leading to hyperexcitability of the postsynaptic neuron of the central nervous system of arthropods. Fluralaner demonstrated insecticidal activity against different insect species. METHODS: The study aimed to evaluate the effects of fluralaner on the biology, survival, and reproductive fitness of Anopheles aquasalis. The following lethal concentrations (LC) were determined for An. aquasalis: LC5 = 0.511 µM; LC25 = 1.625 µM; LC50 = 3.237 µM. RESULTS: A significant decrease (P < 0.001) was evident in the number of eggs, larvae, and pupae in the group exposed to a sublethal dose of fluralaner when compared to a control group (without the drug). Using blood from dogs after administration of fluralaner, it was observed that the drug causes 100% mortality in An. aquasalis in less than 24 h after feeding; this effect remains even after 90 days in all samples. DISCUSSION: Fluralaner showed the same result for up to 60 days, and after that, there was a slight reduction in its effect, evidenced by a decrease in the percentage of dead females; however, still significant when compared to the control group. CONCLUSION: Fluralaner affects the biology and reduction of survival in An. aquasalis in a lasting and prolonged period, and its fecundity with lower dosages, is a strong candidate for controlling disease vectors.


Assuntos
Anopheles , Inseticidas , Malária , Feminino , Animais , Cães , Anopheles/fisiologia , Malária/prevenção & controle , Aptidão Genética , Mosquitos Vetores , Inseticidas/farmacologia , Biologia
8.
mSystems ; 8(6): e0072623, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37874139

RESUMO

IMPORTANCE: The SARS-CoV-2 virus infection in humans induces significant inflammatory and systemic reactions and complications of which corticosteroids like methylprednisolone have been recommended as treatment. Our understanding of the metabolic and metabolomic pathway dysregulations while using intravenous corticosteroids in COVID-19 is limited. This study will help enlighten the metabolic and metabolomic pathway dysregulations underlying high daily doses of intravenous methylprednisolone in COVID-19 patients compared to those receiving placebo. The information on key metabolites and pathways identified in this study together with the crosstalk with the inflammation and biochemistry components may be used, in the future, to leverage the use of methylprednisolone in any future pandemics from the coronavirus family.


Assuntos
COVID-19 , Humanos , Metilprednisolona/efeitos adversos , SARS-CoV-2 , Administração Intravenosa , Corticosteroides/efeitos adversos
9.
Front Immunol ; 14: 1229611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662953

RESUMO

Background: The novel coronavirus disease 2019 (COVID-19) presents with complex pathophysiological effects in various organ systems. Following the COVID-19, there are shifts in biomarker and cytokine equilibrium associated with altered physiological processes arising from viral damage or aggressive immunological response. We hypothesized that high daily dose methylprednisolone improved the injury biomarkers and serum cytokine profiles in COVID-19 patients. Methods: Injury biomarker and cytokine analysis was performed on 50 SARS-Cov-2 negative controls and 101 hospitalized severe COVID-19 patients: 49 methylprednisolone-treated (MP group) and 52 placebo-treated serum samples. Samples from the treated groups collected on days D1 (pre-treatment) all the groups, D7 (2 days after ending therapy) and D14 were analyzed. Luminex assay quantified the biomarkers HMGB1, FABP3, myoglobin, troponin I and NTproBNP. Immune mediators (CXCL8, CCL2, CXCL9, CXCL10, TNF, IFN-γ, IL-17A, IL-12p70, IL-10, IL-6, IL-4, IL-2, and IL-1ß) were quantified using cytometric bead array. Results: At pretreatment, the two treatment groups were comparable demographically. At pre-treatment (D1), injury biomarkers (HMGB1, TnI, myoglobin and FABP3) were distinctly elevated. At D7, HMGB1 was significantly higher in the MP group (p=0.0448) compared to the placebo group, while HMGB1 in the placebo group diminished significantly by D14 (p=0.0115). Compared to healthy control samples, several immune mediators (IL-17A, IL-6, IL-10, MIG, MCP-1, and IP-10) were considerably elevated at baseline (all p≤0.05). At D7, MIG and IP-10 of the MP-group were significantly lower than in the placebo-group (p=0.0431, p=0.0069, respectively). Longitudinally, IL-2 (MP-group) and IL-17A (placebo-group) had increased significantly by D14. In placebo group, IL-2 and IL-17A continuously increased, as IL-12p70, IL-10 and IP-10 steadily decreased during follow-up. The MP treated group had IL-2, IFN-γ, IL-17A and IL-12p70 progressively increase while IL-1ß and IL-10 gradually decreased towards D14. Moderate to strong positive correlations between chemokines and cytokines were observed on D7 and D14. Conclusion: These findings suggest MP treatment could ameliorate levels of myoglobin and FABP3, but appeared to have no impact on HMGB1, TnI and NTproBNP. In addition, methylprednisolone relieves the COVID-19 induced inflammatory response by diminishing MIG and IP-10 levels. Overall, corticosteroid (methylprednisolone) use in COVID-19 management influences the immunological molecule and injury biomarker profile in COVID-19 patients.


Assuntos
COVID-19 , Proteína HMGB1 , Humanos , Citocinas , Interleucina-10 , Interleucina-17 , Metilprednisolona/uso terapêutico , Quimiocina CXCL10 , Interleucina-2 , Interleucina-6 , Mioglobina , SARS-CoV-2 , Interleucina-12
10.
Pathogens ; 12(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37513742

RESUMO

In the Amazon, the treatment for Plasmodium vivax is chloroquine plus primaquine. However, this regimen is limited due to the risk of acute hemolytic anemia in glucose-6-phosphate dehydrogenase deficiency. Primaquine is a prodrug that requires conversion by the CYP2D6 enzyme to be effective against malaria. A series of cases were performed at an infectious diseases reference hospital in the Western Brazilian Amazon. The STANDARD G6PD (SD Biosensor®) assay was used to infer G6PD status and real-time PCR to genotype G6PD, CYP2C19, CYP2D6 and CYP3A4. Eighteen patients were included, of which 55.6% had African A- variant (G202A/A376G), 11.1% African A+ variant (A376G), 5.6% Mediterranean variant (C563T) and 27.8% were wild type. CYP2C19, CYP2D6 and CYP3A4 genotyping showed no statistically significant differences in the frequency of star alleles between the groups G6PD deficient and G6PD normal. Elevated levels of liver and kidney markers in the G6PDd patients were observed in gNM, gRM and gUM of CYP2C19 and CYP2D6 (p < 0.05). Furthermore, in this study there was no influence of CYPs on hemolysis. These findings reinforce the importance of studies on the mapping of G6PD deficiency and genetic variations of CYP2C19, CYP2D6 and CYP3A4. This mapping will allow us to validate the prevalence of CYPs and determine their influence on hemolysis in patients with malaria, helping to decide on the treatment regimen.

11.
Toxins (Basel) ; 15(6)2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37368676

RESUMO

Malaria is an infectious disease caused by Plasmodium spp. and it is mainly transmitted to humans by female mosquitoes of the genus Anopheles. Malaria is an important global public health problem due to its high rates of morbidity and mortality. At present, drug therapies and vector control with insecticides are respectively the most commonly used methods for the treatment and control of malaria. However, several studies have shown the resistance of Plasmodium to drugs that are recommended for the treatment of malaria. In view of this, it is necessary to carry out studies to discover new antimalarial molecules as lead compounds for the development of new medicines. In this sense, in the last few decades, animal venoms have attracted attention as a potential source for new antimalarial molecules. Therefore, the aim of this review was to summarize animal venom toxins with antimalarial activity found in the literature. From this research, 50 isolated substances, 4 venom fractions and 7 venom extracts from animals such as anurans, spiders, scorpions, snakes, and bees were identified. These toxins act as inhibitors at different key points in the biological cycle of Plasmodium and may be important in the context of the resistance of Plasmodium to currently available antimalarial drugs.


Assuntos
Anopheles , Antimaláricos , Malária , Plasmodium , Toxinas Biológicas , Feminino , Humanos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Mosquitos Vetores , Malária/tratamento farmacológico , Toxinas Biológicas/uso terapêutico , Plasmodium falciparum
12.
Viruses ; 15(4)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37112998

RESUMO

Numerous studies have focused on inflammation-related markers to understand COVID-19. In this study, we performed a comparative analysis of spike (S) and nucleocapsid (N) protein-specific IgA, total IgG and IgG subclass response in COVID-19 patients and compared this to their disease outcome. We observed that the SARS-CoV-2 infection elicits a robust IgA and IgG response against the N-terminal (N1) and C-terminal (N3) region of the N protein, whereas we failed to detect IgA antibodies and observed a weak IgG response against the disordered linker region (N2) in COVID-19 patients. N and S protein-specific IgG1, IgG2 and IgG3 response was significantly elevated in hospitalized patients with severe disease compared to outpatients with non-severe disease. IgA and total IgG antibody reactivity gradually increased after the first week of symptoms. Magnitude of RBD-ACE2 blocking antibodies identified in a competitive assay and neutralizing antibodies detected by PRNT assay correlated with disease severity. Generally, the IgA and total IgG response between the discharged and deceased COVID-19 patients was similar. However, significant differences in the ratio of IgG subclass antibodies were observed between discharged and deceased patients, especially towards the disordered linker region of the N protein. Overall, SARS-CoV-2 infection is linked to an elevated blood antibody response in severe patients compared to non-severe patients. Monitoring of antigen-specific serological response could be an important tool to accompany disease progression and improve outcomes.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina A , Imunoglobulina M , Glicoproteína da Espícula de Coronavírus
13.
Biomolecules ; 13(3)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979338

RESUMO

Bergenin is a glycosidic derivative of trihydroxybenzoic acid that was discovered in 1880 by Garreau and Machelart from the rhizomes of the medicinal plant Bergenia crassifolia (currently: Saxifraga crassifolia-Saxifragaceae), though was later isolated from several other plant sources. Since its first report, it has aroused interest because it has several pharmacological activities, mainly antioxidant and anti-inflammatory. In addition to this, bergenin has shown potential antimalarial, antileishmanial, trypanocidal, antiviral, antibacterial, antifungal, antinociceptive, antiarthritic, antiulcerogenic, antidiabetic/antiobesity, antiarrhythmic, anticancer, hepatoprotective, neuroprotective and cardioprotective activities. Thus, this review aimed to describe the sources of isolation of bergenin and its in vitro and in vivo biological and pharmacological activities. Bergenin is distributed in many plant species (at least 112 species belonging to 34 families). Both its derivatives (natural and semisynthetic) and extracts with phytochemical proof of its highest concentration are well studied, and none of the studies showed cytotoxicity for healthy cells.


Assuntos
Extratos Vegetais , Plantas Medicinais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Plantas Medicinais/química , Antioxidantes/química , Benzopiranos/química
14.
Malar J ; 21(1): 343, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397077

RESUMO

BACKGROUND: The groundwork for malaria elimination does not currently consider the potential of Plasmodium zoonotic cycles that involve non-human primates (NHPs) in sylvatic environments. Since vivax malaria is less responsive to control measures, finding Plasmodium vivax infected NHPs adds even more concern. METHODS: Both Free-living monkeys in forest fragments inside the urban area and captive monkeys from a local zoo had blood samples tested for Plasmodium species. RESULTS: In this study, among the Neotropical monkeys tested, three (4.4%), one captive and two free-living, were found to be naturally infected by P. vivax. CONCLUSION: This important finding indicates that it is necessary to estimate the extent to which P. vivax NHP infection contributes to the maintenance of malaria transmission to humans. Therefore, the discussion on wildlife conservation and management must be incorporated into the malaria elimination agenda.


Assuntos
Malária Vivax , Malária , Plasmodium , Animais , Malária Vivax/prevenção & controle , Erradicação de Doenças , Plasmodium vivax , Malária/prevenção & controle
15.
Pathogens ; 11(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36422580

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency testing is not routinely performed before primaquine treatment in most Plasmodium vivax endemic areas, despite the risk of primaquine-associated hemolysis. This is due to the operational challenges associated with pragmatic G6PD testing and as such needs to be addressed. METHODS AND FINDINGS: This mixed-methods operational study was aimed at implementing the quantitative point-of-care StandardTM G6PD (SD Biosensor, Korea) screening test in malaria treatment units (MTUs) in the municipalities of Rio Preto da Eva and Mâncio Lima, in the Brazilian Amazon, between mid-January 2020 and December 2020. In total, 1286 P. vivax cases were treated based on the Standard G6PD test: 1230 had activity equal to or greater than 4.0 U/g Hb, and 56 less than 4.0 U/g Hb. No G6PD deficient (G6PDd) genotypes were found in 96 samples from the 1230, and only 21 of the 56 G6PDd cases had confirmed G6PDd genotypes. Evaluations were conducted on the proficiency of health care professionals (HCPs) training to perform the test, the reliability of testing performed in the field, and the perceptions of HCPs and patients about the implementation. Post-training proficiency was 73.4% after a 4-hour training session. This study revealed that locations with lower malaria caseloads will need regular refresher training. The test was well accepted by both HCPs and patients. Signs and symptoms of hemolysis were not always associated with malaria treatment drugs by HCPs and patients. INTERPRETATION: Point-of-care quantitative G6PD testing can be performed at MTUs in the Brazilian Amazon to inform treatment decisions with primaquine. Limitations related to technical and cultural aspects need to be addressed further when expanding screening to larger areas.

16.
Biomed Pharmacother ; 149: 112874, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36068770

RESUMO

The western Amazon basin is an important endemic area for malaria by P. vivax. In recent years, several reports showed the treatment failure with chloroquine, which can be related to resistance. The assessment of chloroquine resistance requires the evaluation of drug exposure, and when possible, the estimation of the pharmacokinetic parameters. However, there is no data on the pharmacokinetics of chloroquine in this endemic area. Moreover, the influence of the early reappearance of parasites in blood on the exposure to the drug was low exploited in the literature. The present study described the pharmacokinetic parameters of chloroquine in whole blood of adult patients with P. vivax malaria from the western Brazilian Amazon basin and compared the area under the curve (AUC) with the parasitological outcome at day 28. A total of 19 patients with parasite recurrence within 28 days and 20 patients with no recurrence were included in the study. Chloroquine was measured by high-performance liquid chromatography (HPLC). The pharmacokinetic parameters were estimated by non-compartmental modeling. The maximum concentration ranged from 1285 to 2030 ng/mL. The terminal half-life varied from 5.3 to 12.8 days. The volume of distribution from 1090 to 2340 L/kg, and the area under the curve to the last measurable concentration from 247 to 432 ng/mL.h. The pharmacokinetic parameters were similar in both groups, which suggests the lack of influence of early reappearance of parasites on chloroquine pharmacokinetics.


Assuntos
Antimaláricos , Malária Vivax , Adulto , Antimaláricos/farmacologia , Brasil , Cloroquina/farmacocinética , Cloroquina/uso terapêutico , Resistência a Medicamentos , Humanos , Malária Vivax/induzido quimicamente , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Plasmodium vivax , Falha de Tratamento
17.
Sci Rep ; 12(1): 10361, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725784

RESUMO

The exact path leading to cognitive impairment that goes beyond malaria is unclear, but it appears to be the result of interactive factors. Time of exposure to disease and recurrences are potentially major determinant variables. Cognitive impairment is described mainly in children, rarely in adults. The disease in high endemic areas usually does not affect elderlies, because of acquired immunity over time. However, this population is relatively more frequently sick in lower endemic areas, such as in the Amazon. This study assessed the effect of Plasmodium vivax malaria on the executive and cognitive functions of elderlies, in the Brazilian Amazon. A cohort study was conducted to evaluate executive and cognitive functions one week (T0), two months (T2) and eight months (T8) after the malaria episode. Mini-Mental State Examination (MMSE), Beck Depression Inventory II (BDI-II), Clock Drawing Test (CDT), Wechsler adult intelligence scale (WAIS-III), and Wisconsin Card Sorting Test (WCST) were used to assess executive and cognitive functions. One hundred-forty elderlies were enrolled (70 with P. vivax malaria and 70 without malaria). P. vivax malaria was associated with impairment of the executive and cognitive functions in elderlies for up to 8 months after acute P. vivax malaria. Prior history of malaria, recurrences and higher parasitemia were independently associated with various surrogates of executive and cognitive impairment. With the increase in life expectancy, elderlies living in malaria endemic areas will deserve more attention from health authorities, to guarantee improvement of their quality of life in the tropics.


Assuntos
Malária Vivax , Malária , Adulto , Brasil/epidemiologia , Criança , Cognição , Estudos de Coortes , Humanos , Malária/complicações , Malária Vivax/complicações , Malária Vivax/diagnóstico , Malária Vivax/epidemiologia , Plasmodium vivax , Qualidade de Vida , Recidiva
18.
Mem Inst Oswaldo Cruz ; 117: e210330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35766676

RESUMO

BACKGROUND: Understanding the epidemiology of malaria through the molecular force of the blood-stage infection of Plasmodium vivax (molFOB) may provide a detailed assessment of malaria transmission. OBJECTIVES: In this study, we investigated risk factors and spatial-temporal patterns of incidence of Plasmodium infection and clinical malaria episodes in three peri-urban communities of Manaus, Western Brazilian Amazon. METHODS: Monthly samples were collected in a cohort of 1,274 individuals between April 2013 and March 2014. DNA samples were subject to Plasmodium species. molFOB was calculated by counting the number of genotypes observed on each visit, which had not been present in the preceding two visits and adjusting these counts by the respective times-at-risk. FINDINGS: Respectively, 77.8% and 97.2% of the population remained free of P. vivax and P. falciparum infection. Expected heterozygosity for P. vivax was 0.69 for MSP1_F3 and 0.86 for MS2. Multiplicity of infection in P. vivax was close to the value of 1. The season was associated with P. vivax positivity [adjusted hazard ratio (aHR) 2.6 (1.9-5.7)] and clinical disease [aHR 10.6 (2.4-47.2)]. P. falciparum infection was associated with previous malarial episodes [HR 9.7 (4.5-20.9)]. Subjects who reported possession of a bed net [incidence rate ratio (IRR) 1.6 (1.2-2.2)] or previous malaria episodes [IRR 3.0 (2.0-4.5)] were found to have significantly higher P. vivax molFOB. MAIN CONCLUSIONS: Overall, P. vivax infection prevailed in the area and infections were mostly observed as monoclonal. Previous malaria episodes were associated with significantly higher P. vivax molFOB.


Assuntos
Malária Falciparum , Malária Vivax , Brasil/epidemiologia , Humanos , Malária Vivax/epidemiologia , Plasmodium falciparum , Plasmodium vivax/genética , Prevalência
19.
Front Microbiol ; 13: 844283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572676

RESUMO

The severity, disabilities, and lethality caused by the coronavirus 2019 (COVID-19) disease have dumbfounded the entire world on an unprecedented scale. The multifactorial aspect of the infection has generated interest in understanding the clinical history of COVID-19, particularly the classification of severity and early prediction on prognosis. Metabolomics is a powerful tool for identifying metabolite signatures when profiling parasitic, metabolic, and microbial diseases. This study undertook a metabolomic approach to identify potential metabolic signatures to discriminate severe COVID-19 from non-severe COVID-19. The secondary aim was to determine whether the clinical and laboratory data from the severe and non-severe COVID-19 patients were compatible with the metabolomic findings. Metabolomic analysis of samples revealed that 43 metabolites from 9 classes indicated COVID-19 severity: 29 metabolites for non-severe and 14 metabolites for severe disease. The metabolites from porphyrin and purine pathways were significantly elevated in the severe disease group, suggesting that they could be potential prognostic biomarkers. Elevated levels of the cholesteryl ester CE (18:3) in non-severe patients matched the significantly different blood cholesterol components (total cholesterol and HDL, both p < 0.001) that were detected. Pathway analysis identified 8 metabolomic pathways associated with the 43 discriminating metabolites. Metabolomic pathway analysis revealed that COVID-19 affected glycerophospholipid and porphyrin metabolism but significantly affected the glycerophospholipid and linoleic acid metabolism pathways (p = 0.025 and p = 0.035, respectively). Our results indicate that these metabolomics-based markers could have prognostic and diagnostic potential when managing and understanding the evolution of COVID-19.

20.
Sci Rep ; 12(1): 9076, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641592

RESUMO

Globally, malaria and human immunodeficiency virus (HIV) are both independently associated with a massive burden of disease and death. While their co-infection has been well studied for Plasmodium falciparum, scarce data exist regarding the association of P. vivax and HIV. In this cohort study, we assessed the effect of HIV on the risk of vivax malaria infection and recurrence during a 4-year follow-up period in an endemic area of the Brazilian Amazon. For the purpose of this study, we obtained clinical information from January 2012 to December 2016 from two databases. HIV screening data were acquired from the clinical information system at the tropical hospital Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD). The National Malaria Surveillance database (SIVEP malaria) was utilized to identify malaria infections during a 4-year follow-up period after diagnosis of HIV. Both datasets were combined via data linkage. Between 2012 and 2016, a total of 42,121 people were screened for HIV, with 1569 testing positive (3.7%). Out of all the patients diagnosed with HIV, 198 had at least one episode of P. vivax malaria in the follow-up. In the HIV-negative group, 711 participants had at least one P. vivax malaria episode. When comparing both groups, HIV patients had a 6.48 [(5.37-7.83); P < 0.0001] (adjusted relative risk) greater chance of acquiring P. vivax malaria. Moreover, being of the male gender [ARR = 1.41 (1.17-1.71); P < 0.0001], Amerindian ethnicity [ARR = 2.77 (1.46-5.28); P < 0.0001], and a resident in a municipality of the Metropolitan region of Manaus [ARR = 1.48 (1.02-2.15); P = 0.038] were independent risk factors associated with an increased risk of clinical malaria. Education ≥ 8 years [ARR = 0.41 (0.26-0.64); P < 0.0001] and living in the urban area [ARR = 0.44 (0.24-0.80); P = 0.007] were associated to a lower risk of P. vivax malaria. A total of 28 (14.1%) and 180 (25.3%) recurrences (at least a second clinical malaria episode) were reported in the HIV-positive and HIV-negative groups, respectively. After adjusting for sex and education, HIV-positive status was associated with a tendency towards protection from P. vivax malaria recurrences [ARR = 0.55 (0.27-1.10); P = 0.090]. HIV status was not associated with hospitalizations due to P. vivax malaria. CD4 + counts and viral load were not associated with recurrences of P. vivax malaria. No significant differences were found in the distribution of parasitemia between HIV-negative and HIV-positive P. vivax malaria patients. Our results suggest that HIV-positive status is a risk factor for vivax malaria infection, which represents an additional challenge that should be addressed during elimination efforts.


Assuntos
Infecções por HIV , Soropositividade para HIV , Malária Vivax , Brasil/epidemiologia , Estudos de Coortes , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Humanos , Malária Vivax/epidemiologia , Masculino , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...