Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985992

RESUMO

We introduce a new method to remove the one-electron self-interaction error in approximate density functional calculations on an orbital-by-orbital basis, as originally proposed by Perdew and Zunger [Phys. Rev. B 1981, 23, 5048]. This method is motivated by a recent proposal by Pederson et al. [J. Chem. Phys. 2014, 140, 121103] to remove self-interaction that employs orbitals derived from the real-space density matrix, known as FLOSIC (Fermi Löwdin orbitals self-interaction correction). However, instead of Fermi Löwdin orbitals, our scheme utilizes columns of the density matrix to determine localized orbitals, like the localization procedure proposed by Fuemmeler et al. [J. Chem. Theory Comput. 2023, 19, 8572]. The new method, dubbed DOCSIC for density matrix as orbital coefficients self-interaction correction, contrasts with traditional Perdew-Zunger or FLOSIC in that it does not incorporate additional optimization parameters, and, unlike the average density self-interaction correction of Ciofini et al. [Chem. Phys. Lett. 2003, 380, 12], it makes use of localized orbitals. Another advantage of DOCSIC is that it can be implemented as a mean-field formalism. We show details of the self-consistent generalized Kohn-Sham implementation, some illustrative results, and we finally highlight its advantages and limitations.

2.
J Phys Chem A ; 128(26): 5089-5099, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38725128

RESUMO

In this work, we present the electric field gradient (EFG) given by the linear response elimination of the small component (LRESC) scheme up to the 1/c4 order (c is the speed of light in vacuum) in CHFClX (X = Br, I, At) chiral molecules, together with CHF2Br and CH2FX (X = Br, I, At) tetrahedral systems. The former could be good candidates for further parity violation studies, especially when heavy atoms are surrounding. In this context, the LRESC scheme demonstrates effective applicability to large tetrahedral and chiral molecules that incorporate heavy elements, with relativistic effects playing a crucial role. The LRESC results of EFG exhibit an excellent agreement with those calculated at the four-component level, giving differences of only hundredths order in a.u. (atomic units) for the bromine nucleus and less than 0.1 a.u. for the iodine nucleus. Regarding the other nuclei, for the chiral molecules, there is a heavy atom effect on the light atom (HALA) for chlorine and fluorine atoms as the substituent halogen atom becomes heavier. Furthermore, the electronic part of the EFG for the central carbon and the fluorine nuclei presents an important dependence with the environment in the molecules under study. With accurate calculations of the EFG and tabulated nuclear quadrupole moment, the nuclear quadrupole coupling constant is obtained within the LRESC scheme, including for the first time correlation effects on the spin-dependent corrections with this methodology, providing results close to the experimental ones for Cl, Br, and I atoms. At the Hartree-Fock level, the differences are around 6% for Br and I nuclei, and at the density functional theory level with the LDA and PBE0 functionals, the differences are no more than 2%.

3.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38047509

RESUMO

We introduce a generalization of the σ-SCF method to approximate noncollinear spin ground and excited single-reference electronic states by minimizing the Hamiltonian variance. The new method is based on the σ-SCF method, originally proposed by Ye et al. [J. Chem. Phys. 147, 214104 (2017)], and provides a prescription to determine ground and excited noncollinear spin states on an equal footing. Our implementation was carried out utilizing an initial simulated annealing stage followed by a mean-field iterative self-consistent approach to simplify the cumbersome search introduced by generalizing the spin degrees of freedom. The simulated annealing stage ensures a broad exploration of the Hilbert space spanned by the generalized spin single-reference states with random complex element-wise rotations of the generalized density matrix elements in the simulated annealing stage. The mean-field iterative self-consistent stage employs an effective Fockian derived from the variance, which is utilized to converge tightly to the solutions. This process helps us to easily find complex spin structures, avoiding manipulating the initial guess. As proof-of-concept tests, we present results for Hn (n = 3-7) planar rings and polyhedral clusters with geometrical spin frustration. We show that most of these systems have noncollinear spin excited states that can be interpreted in terms of geometric spin frustration. These states are not directly targeted by energy minimization methods, which are meant to converge to the ground state. This stresses the capability of the σ-SCF methodology to find approximate noncollinear spin structures as mean-field excited states.

4.
J Phys Chem A ; 127(2): 527-534, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36598275

RESUMO

The Fermi-Löwdin orbital self-interaction correction (FLOSIC) method effectively provides a transformation from canonical orbitals to localized Fermi-Löwdin orbitals which are used to remove the self-interaction error in the Perdew-Zunger (PZ) framework. This transformation is solely determined by a set of points in space, called Fermi-Löwdin descriptors (FODs), and the occupied canonical orbitals or the density matrix. In this work, we provide a detailed workflow for the implementation of the FLOSIC method for removal of self-interaction error in DFT calculations in an orbital-by-orbital basis that takes advantage of the unitary invariant nature of the FLOSIC method. In this way, it is possible to cast the self-consistent energy minimization at fixed FODs in the same manner than standard Kohn-Sham with one additional term in the Kohn-Sham Hamiltonian that introduces the PZ self-interaction correction. Each energy minimization iteration is divided in two substeps, one for the density matrix and one for the FODs. Expressions for the effective Kohn-Sham matrix and FOD gradients are provided such that its implementation is suitable for most electronic structure codes. We analyze the convergence characteristics of the algorithm and present applications for the evaluation of NMR shielding constants and real-time time-dependent DFT simulations based on the Liouville-von Neumann equation to calculate excitation energies.

5.
J Chem Phys ; 157(24): 244105, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36586974

RESUMO

In this work, we present relativistic corrections to the electric field gradient (EFG) given by the Linear Response Elimination of the Small Component (LRESC) scheme at 1/c2 order and including for the first time spin-dependent (SD) corrections at 1/c4 order. We show that these new terms improve the performance of LRESC as results with this methodology are very close to those calculated at the four-component Dirac-Hartree-Fock (4c-DHF) level. We assess the new corrections in BrY and AtY di-halogen (Y = F, Cl, Br, I, and At) and XZY bi-linear molecules (Z = Zn, Cd, and Hg; X, Y = F, Cl, Br, I, and At). At the 4c-DHF level, we analyze the contributions coming from the large and small components of the relativistic 4c wave function to the electronic part of EFG and compare them with the LRESC corrections to find their electronic origin. For the HgX2 (X = Cl, Br, and I) subset, when the SD correcting terms are included, LRESC calculations match very well with 4c-DHF ones and those from the literature, with differences less than 1% for molecules containing up to three heavy atoms. We show that LRESC gives accurate values of EFG, allowing the analysis of the electronic origin of relativistic effects in terms of well-known nonrelativistic operators.

6.
J Chem Inf Model ; 60(2): 722-730, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31877038

RESUMO

The linear response within the elimination of the small component model (LRESC) is an insightful and computationally efficient method for including relativistic effects on molecular properties like the nuclear magnetic shielding constants, spin-rotation constant, g-tensor, and electric field gradient of heavy atom containing molecules with atoms belonging up to the sixth row of the periodic table. One of its main advantages is its capacity to analyze the electronic origin of the different relativistic correcting terms. Until now, it was always applied on top of Hartree-Fock ground-state wave functions (LRESC/HF) to calculate and analyze NMR shieldings. In this work, we show the performance of the LRESC formalism on top of some density functional theory (DFT) functionals to compute tin shielding constants in SnX4 (X = H, F, Cl, Br, I) molecular systems. We analyze the performance of each LRESC/DFT scheme on reproducing the electronic mechanisms of the shieldings, taking as a benchmark the results of relativistic calculations at the RPA level of approach (4c/RPA). As in previous works, we divide the LRESC relativistic correcting terms into two groups: core-dependent and ligand-dependent contributions. It is shown here that core-dependent corrections are well-reproduced for the selected DFT functionals, but some differences arise in the ligand-dependent ones. We focus on the performance of different functionals, including the same electron correlation part but containing different amounts of HF exchange. The best results are obtained for the BHandHLYP functional (50% of HF exchange) and the worst for BLYP (0%). When the percentage of HF exchange increases, ligand-dependent contributions are better described, and the final LRESC/DFT results are closer to those obtained with LRESC/HF and 4c/RPA methods. The spin-orbit correction to the shielding constant is one of the main ligand-dependent contributions (there are two more) with total value depending on the amount of HF exchange included in the functional. When the amount of HF exchange decreases, the spin-orbit contribution becomes larger, overestimating the shielding constant even when nonrelativisitc DFT values are much smaller than the nonrelativistic HF ones, as it happens for the heaviest molecular system studied here (SnI4).


Assuntos
Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Ligantes
7.
Inorg Chem ; 58(4): 2550-2557, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30694654

RESUMO

In this work we present a computational analysis of a new family of magnetic Co(II) single-ion complexes with large magnetic anisotropy based on icosahedral and octahedral carborane ligands. In particular, we extend our previous computational work on mononuclear Co(II) complexes with 1,2-(HS)2-1,2-C2B10H10 and 9,12-(HS)2-1,2-C2B10H10 icosahedral o-carborane ligands to a larger set of complexes where the Co(II) ion is doubly chelated by those ligands and by other two positional isomers belonging to the 1,2-dicarba- closo-dodecaborane family. We also describe Co(II) complexes with octahedral ligands derived from 1,2-dicarba- closo-hexaborane and study the effects of replacing a thiol group by a hydroxy group in both polyhedral geometries, as well as the influence of the position of the carbon atoms. On analysis of the results for a total of 20 complexes, our results show that carborane-based Co(II) single-ion compounds present a distorted-tetrahedral geometry, high-spin ground states, and high values for the magnetic anisotropy parameters. We point out which of these would be suitable candidates to be synthesized and used as molecular magnets.

8.
Inorg Chem ; 57(13): 7763-7769, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29894170

RESUMO

We analyze the magnetic properties of three mononuclear Co(II) coordination complexes using quantum chemical complete active space self-consistent field and N-electron valence perturbation theory approaches. The complexes are characterized by a distorted tetrahedral geometry in which the central ion is doubly chelated by the icosahedral ligands derived from 1,2-(HS)2-1,2-C2B10H10 (complex I), from 1,2-(HS)2-1,2-C2B10H10 and 9,12-(HS)2-1,2-C2B10H10 (complex II), and from 9,12-(HS)2-1,2-C2B10H10 (complex III), which are two positional isomers of dithiolated 1,2-dicarba- closo-dodecaborane (complex I). Complex I was realized experimentally recently (Tu, D.; Shao, D.; Yan, H.; Lu, C. Chem. Commun. 2016, 52, 14326) and served to validate the computational protocol employed in this work, while the remaining two proposed complexes can be considered positional isomers of I. Our calculations show that these complexes present different axial and rhombic zero-field splitting anisotropy parameters and different values of the most significant components of the g tensor. The predicted axial anisotropy D = -147.2 cm-1 for complex II is twice that observed experimentally for complex I, D = -72.8 cm-1, suggesting that this complex may be of interest for practical applications. We also analyze the temperature dependence of the magnetic susceptibility and molar magnetization for these complexes when subject to an external magnetic field. Overall, our results suggest that o-carborane-incorporated Co(II) complexes are worthwhile candidates for experimental exploration as single-ion molecular magnets.

9.
Phys Chem Chem Phys ; 17(38): 25516-24, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26364677

RESUMO

Accurate calculations of nuclear magnetic shieldings of group-11 metal halides, σ(M; MX) (M = Cu, Ag, Au; X = H, F, Cl, Br, I), were performed with relativistic and nonrelativistic theoretical schemes in order to learn more about the importance of the involved electronic mechanisms that underlie such shieldings. We applied state of the art schemes: polarization propagators at a random phase level of approach (PP-RPA); spin-free Hamiltonian (SF); linear response elimination of small component (LRESC) and density functional theory (DFT) with two different functionals: B3LYP and PBE0. The results from DFT calculations are not close to those from the relativistic polarization propagator calculations at the RPA level of approach (RelPP-RPA), in line with previous results. The spin-orbit (SO) contribution to a shielding constant is important only for MF molecules (M = Cu, Ag, Au). Different electronic mechanisms are considered within the LRESC method, bunched into two groups: core- and ligand-dependent. For the analysed shieldings the core-dependent electronic mechanisms are the most important ones; the ligand-dependent being only important for MF molecules. An out of range value for σ(Au) is found in AuF. It was previously reported in the literature, either originated in the large fluorine electronegativity together with large spin-orbit coupling contributions; or, due to Fermi-contact contributions. We argue here that such an unexpected large value is an artifact originated in the appearance of quasi instabilities, and show how to handle this apparent problem.

10.
Wiley Interdiscip Rev Comput Mol Sci ; 4(3): 269-284, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25309629

RESUMO

Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.

11.
J Mol Model ; 20(9): 2417, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25201450

RESUMO

The nuclear magnetic shieldings of Si, Ge, and Sn in MH(4-n) Y(n) (M = Si, Ge, Sn; Y = F, Cl, Br, I and n = 1-4) molecular systems are highly influenced by the substitution of one or more hydrogens by heavy-halogen atoms. We applied the linear response elimination of small components (LRESC) formalism to calculate those shieldings and learn whether including only a few of the leading relativistic correction terms is sufficient to be able to quantitatively reproduce the full relativistic value. It was observed that the nuclear magnetic shieldings change as the number of heavy halogen substituents and their weights vary, and the pattern of σ(M) generally does not exhibit the normal halogen dependence (NHD) behavior that can be seen in similar molecular systems containing carbon atoms. We also analyzed each relativistic correction afforded by the LRESC method and split them in two: core-dependent and ligand-dependent contributions; we then looked for the electronic mechanisms involved in the different relativistic effects and in the total relativistic value. Based on this analysis, we were able to study the electronic mechanism involved in a recently proposed relativistic effect, the "heavy atom effect on vicinal heavy atom" (HAVHA), in more detail. We found that the main electronic mechanism is the spin-orbit or σ p (T(3)) correction, although other corrections such as σ p (S(1)) and σ p (S(3)) are also important. Finally, we analyzed proton magnetic shieldings and found that, for molecules containing Sn as the central atom, σ(H) decreases as the number of heavy halogen substituents (of the same type: either F, Cl, or Br) increases, albeit at different rates for different halogens. σ(H) only increase as the number of halogen substituents increases if the halogen is iodine.

12.
J Chem Phys ; 138(13): 134107, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23574208

RESUMO

In the present work, numerical results of the nuclear spin-rotation (SR) tensor in the series of compounds HX (X = H,F,Cl,Br,I) within relativistic 4-component expressions obtained by Aucar et al. [J. Chem. Phys. 136, 204119 (2012)] are presented. The SR tensors of both the H and X nuclei are discussed. Calculations were carried out within the relativistic Linear Response formalism at the Random Phase Approximation with the DIRAC program. For the halogen nucleus X, correlation effects on the non-relativistic values are shown to be of similar magnitude and opposite sign to relativistic effects. For the light H nucleus, by means of the linear response within the elimination of the small component approach it is shown that the whole relativistic effect is given by the spin-orbit operator combined with the Fermi contact operator. Comparison of "best estimate" calculated values with experimental results yield differences smaller than 2%-3% in all cases. The validity of "Flygare's relation" linking the SR tensor and the NMR nuclear magnetic shielding tensor in the present series of compounds is analyzed.

13.
J Chem Phys ; 137(21): 214319, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23231243

RESUMO

Nuclear magnetic shieldings of both carbon and hydrogen atoms of haluro methyl molecules are highly influenced by the substitution of one or more hydrogen by halogen heavy atoms. We applied the linear response elimination of small components, LRESC, formalism to calculate such shieldings and learn whether including only few terms is enough for getting quantitative reproduction of the total shieldings or not. First, we discuss the contribution of all leading relativistic corrections to σ(C), in CHX(2)I molecular models with X = H, F, and Cl, and show that spin-orbit (SO) effects are the main ones. After adding the SO effects to the non-relativistic (NR) results, we obtain ~ 97% (93%) of the total LRESC values for σ(C) (σ(H)). The magnitude of SO terms increases when the halogen atom becomes heavier. In this case, such contributions to σ(C) can be extrapolated as a function of Z, the halogen atomic number. Furthermore, when paramagnetic spin-orbit (PSO) contributions are also considered, we obtain results that are within 1% of the total LRESC value. Then we study in detail the main electronic mechanisms involved to contribute C and H shieldings on CH(n)X(4 - n) (n = 1, 3), and CHXYZ (X, Y, Z = F, Cl, Br, I) model compounds. The pattern of σ(C) for all series of compounds follows a normal halogen dependence (NHD), though with different rate of increase. A special family of compounds is that of CHF(2)X for which σ(nr)(C) follows an inverse halogen dependence though the total shielding have a NHD due to the SO contributions. For the series CH(3)X (X = F, Cl, Br and I), we found that σ(SO) ~ Z(X) (2.53). Another important finding of this work is the logarithmic dependence of σ(SO)(C) with the substituent atomic number: ln σ(SO)(C) = A(X) + a(X) Z(Y) for both family of compounds CH(2)XY and CHX(2)Y. We also performed four-component calculations using the spin-free Hamiltonian to obtain SO contributions within a four-component framework.

14.
J Chem Phys ; 135(4): 044306, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21806118

RESUMO

We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Compostos de Mercúrio/química , Metodologias Computacionais , Isótopos de Mercúrio/química , Teoria Quântica
15.
J Chem Phys ; 134(3): 034123, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21261346

RESUMO

The influence of the spin-Zeeman (SZ) operator in the evaluation of the spin-orbit effect on the nuclear magnetic shielding tensor in the context of the linear response within the elimination of the small component approach is critically discussed. It is shown that such term yields no contribution to the isotropic nuclear magnetic shielding constant, but it may be of great importance in the determination of individual tensor components, and particularly of the tensor anisotropy. In particular, an interesting relation between the SZ and orbital Zeeman contributions to the spin-orbit effect for the case of linear molecules is shown to hold. Numerical examples for the BrH, IH, and XeF(2) molecules are presented which show that, provided the SZ term is taken into account, results of the individual shielding tensor components and the tensor anisotropy are in good agreement with those obtained by other theoretical methods, and particularly by the Dirac-Hartree-Fock approach.


Assuntos
Magnetismo , Teoria Quântica , Anisotropia , Bromo/química , Fluoretos/química , Hidrogênio/química , Iodo/química , Espectroscopia de Ressonância Magnética , Xenônio/química
16.
J Chem Theory Comput ; 6(6): 1894-9, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26615848

RESUMO

We investigate the effect of Hartree-Fock range-separation on the calculation of magnetic exchange couplings in a set of nine bimetallic transition-metal complexes containing 3d elements (V, Cr, Mn, and Cu). To this end, we have compared magnetic exchange couplings calculated as self-consistent energy differences using two global hybrid functionals, B3LYP (Becke 3-parameter exchange and Lee-Yang-Parr correlation) and PBEh (hybrid Perdew-Burke-Ernzerhof) with the short-range separated HSE (Heyd-Scuseria-Ernzerhof) and the long-range corrected LC-ωPBE. Our results show that, although there is no clear superiority of any of these functionals when compared with experimental data, the LC-ωPBE provides a better description of the magnetization on the metallic centers, yielding self-consistent solutions that mimic more closely a Heisenberg-like behavior.

17.
J Phys Chem A ; 113(36): 9874-80, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19685922

RESUMO

A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds.

18.
J Chem Phys ; 130(8): 084102, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19256592

RESUMO

An alternative approach for the calculation of the electron-positron (e-p) contribution to magnetic properties based on two-component Breit-Pauli spinors is presented. In it, the elimination of the small component scheme is applied to the inverse propagator matrix of e-p pairs. The effect of the positronic manifold is expressed as an operator acting on Breit-Pauli spinors. The operator form thus obtained sums up the relativistic correction as a geometric series and as a result a totally different behavior in the vicinity of a nucleus is obtained as compared to the one of the linear response approximation. This feature has deep influence in numerical values of the e-p contribution to the nuclear magnetic shielding of heavy atoms. Numerical calculations carried out for Kr, Xe, and I show that with this approach, the e-p contributions to this property are in good agreement with those of four-component methods.

19.
J Chem Phys ; 123(20): 204112, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16351245

RESUMO

We have employed the Douglas-Kroll-Hess approximation to derive the perturbative Hamiltonians involved in the calculation of NMR spin-spin couplings in molecules containing heavy elements. We have applied this two-component quasirelativistic approach using finite perturbation theory in combination with a generalized Kohn-Sham code that includes the spin-orbit interaction self-consistently and works with Hartree-Fock and both pure and hybrid density functionals. We present numerical results for one-bond spin-spin couplings in the series of tetrahydrides CH(4), SiH(4), GeH(4), and SnH(4). Our two-component Hartree-Fock results are in good agreement with four-component Dirac-Hartree-Fock calculations, although a density-functional treatment better reproduces the available experimental data.

20.
J Chem Phys ; 122(6): 064103, 2005 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-15740363

RESUMO

We have calculated the relativistic corrections to the diamagnetic term of the nuclear magnetic shielding constants for a series of molecules containing heavy atoms. An analysis of the contributions from localized orbitals is performed. We establish quantitatively the relative importance of inner core and valence shell molecular orbitals in each correcting term. Contributions from the latter are much less important than those from the former. The calculated values of the correction sigma(L-PSO), first derived within the linear response elimination of small component formalism, show a power-law dependence on the nuclear charge approximately Z(3.5), in contrast with the approximately Z(3.1) behavior of the mass-velocity external-field correction to the paramagnetic term previously reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...