RESUMO
The Musa spp. represents the most commonly produced, transitioned, and consumed fruit around the globe, with several important applications in the biotechnology, pharmaceutical, and food industries. Moko disease is produced by Ralstonia solanacearum-a factor with a high impact on all crops in Ecuador, representing one of the biggest phytosanitary problems. Four of the most common varieties of Musa spp. were tested to identify the metabolic reaction of plants facing Moko disease. The phenolic and flavonoid content has been evaluated as a defense system, and the α-diphenyl-α-picrylhydrazyl free-radical-scavenging method (DPPH), free-radical-scavenging activity (ABTS), ferric-reducing antioxidant power (FRAP) assays, and liquid chromatography and mass spectrometry (LC-MS) have been adapted to analyze the active compounds with the antioxidant capacity necessary to counteract the pathogenic attack. Our results indicate that all the studied varieties of Musa spp. react in the same way, such that the diseased samples showed a higher accumulation of secondary metabolites with antioxidant capacity compared with the healthy ones, with high active compound synthesis identified during the appearance of Moko disease symptoms. More than 40 compounds and their derivatives (from kaempferol and quercetin glycosides) with protective roles demonstrate the implication of the Musa spp. defense system against R. solanacearum infection.
RESUMO
Agriculture is an important economic sector for Ecuador, sustained by food crops like maize, potatoes, and vegetables cultivated in the highlands while cash crops such as coffee, bananas, cacao, and palm oil are grown on the coastal plains. But, Ecuador is also a country under the influence of several natural hazards due to its geographical location, atmospheric dynamics, and geological characteristics. One of the main risks to food security is the presence of a large number of active volcanoes scattered all over the country with the most representative enemy, the falling volcanic ash. The bibliography in general highlights the potential toxicity of volcanic ash from a human health perspective, but it also negatively influences plant development at the seed's germination, as well as low crop pollination, damaged fruits, reduced leaf respiration depending on the type of crop, the developmental stage, the ash layer, and the climate. The mineral composition of the volcanic ash can also be beneficial for the soil by increasing fertility but at the same time with contrasting effects on plants due to the influence on soil characteristics such as pH, soil aeration, and biodiversity, which can detrimentally affect some crops.
RESUMO
The oil palm Elaeis guineensis represents one of the most important crops in Ecuador. Considering that bud rot disease is deadly in Ecuador, more attention has been given to identifying possible causes for palm debility from this disease. We studied the involvement of fungi and nutrients in triggering bud rot disease in E. guineensis. Special emphasis was given to the molecules synthesized by the plant to protect against this devastating disease. Techniques like Diagnosis and Recommendation Integrated System (DRIS) and metagenomic analysis were used to understand the possible implications of biotic and abiotic factors in the development of bud rot disease in oil palm in Ecuador. Liquid chromatography-mass spectrometry (LC-MS) analysis was used to identify the phenolic protection barrier of the palm facing the disease. Our results indicate that fungi from Ascomyceta phylum were found in the tested samples. The species directly involved are different in soil compared with plants. The results indicate a deficiency of chemical elements, such as Ca, Mn, Mg, and Fe, which are responsible for palm debility from bud rot disease. More than 30 compounds with protective roles were identified in the leaves of symptomatic plants from the first stage of the infection.
RESUMO
The present study aims to provide information about the antioxidant capacity and secondary metabolites from different plant parts of two species that are grown in Ecuador: Chionanthus pubescens (the Ecuadorian national tree), and Chionanthus virginicus (the fringe tree-endemic to the United States of America and adapted to Ecuador's physiographical and ecological conditions). These two species have still not been investigated for these characteristics. A comparative estimation of the antioxidant activities between the leaf, fruit, and inflorescence extracts was performed. In the quest for new medicines, the extracts were analyzed for phenolic, anthocyanin, and flavonoid content. A slight difference was observed between C. pubescens and C. virginicus flowers, the highest antioxidant activity being found in the C. pubescens leaf (DPPH IC50 = 62.8866 mg/mL, ABTS IC50 = 55.852 mg/mL, and FRAP IC50 = 2.8466 g/mL). Our results showed correlations between antioxidant activity, total phenolic content, and flavonoids. This study confirmed that the C. pubescens leaves and fruits from the Andean region of Ecuador represent a good source of antioxidants, especially due to the presence of a high content of phenolic compounds (homovanillic acid, 3,4 dimethoxyphenylacetic acid, vanillic acid, gallic acid, etc.) as determined by the HPLC-DAD method.
RESUMO
Soil nutrients influence all stages (reproduction, growth, and development) of a plant species' life, and it is known that the deficit and/or toxicity of one or more nutrients has negative effects on the production of crops of commercial interest. Ecuador represents one of the "mega-diverse" countries in the world, with an agricultural sector of great importance, due to its contribution to the country's economy. This review provides a panoramic view of soil nutrients from different climatic regions of Ecuador and revises the importance of knowledge about the possible influence of nutrients from the soil on the plant metabolism able to influence the crop resistance against pathogens or to enrich the biological characteristics of these crops.
RESUMO
Moringa oleifera Lam. contains numerous essential constituents found in all plant parts (leaves, pods, and seeds). From all its edible parts, the leaf represents an effective remedy with high potential for medicinal applications. Ecuador is part of the new promising cultivation areas for Moringa, and therefore our study is emphasized to determine the influence of soil nutrition, toxicity (excess), and deficiency, from three main areas of this country, correlated with its climatic characteristics, on the mineral components, bioactive compounds' synthesis, and antioxidant capacity of Moringa. Different analyses were performed in soil and especially leaf samples for phytochemical content, antioxidant activity, calcium, protein, and vitamin C determination to identify the relationship between soil nutrients, abiotic conditions, and the therapeutic potential of this species cultivated in Ecuador. The obtained values using methods such as DPPH, FRAP, and ABTS showed a high antioxidant capacity of the leaves from the Coastal Ecuadorian region, related with total phenolic compounds' content (through the Folin-Ciocalteu method) and flavonoids in samples, with results obtained under the positive influence of high soil nutrients such as Ca, Mg, Mn, and Fe. We can conclude that M. oleifera from the coastal area of Ecuador presents the right environmental and soil conditions to positively influence its mineral and phytochemical content, making it suitable for incorporation into foods and medicines to solve the nutritional and medical problems in Ecuador and worldwide.
RESUMO
Nowadays, climate change is not the only threat facing our planet. There are also other types of pollution such as waste that poisons soils and water and kills plants, harming humans and animals. Sustainability represents a key issue for the actual Global Citizen. For this reason, our article is dedicated to offering biofriendly solutions to decrease wastes, give them a positive meaning, such as a substrate for an edible oyster fungus with nutritive and biological properties usefully for humans. Three types of wastes such as coconut coir, pine sawdust, and paper waste-representative symbols of pollution in Ecuador-have been tested as suitable growing substrate for the edible fungi Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm by analyzing parameters such as Biological Efficiency, Mushroom Yield, and Productive Rate. The influence of these "waste" substrates on the nutritive (protein content), biological characteristic (antioxidant activity), and the content of human-health-sustaining compounds (phenols, flavonoids) were also evaluated using the Kjeldahal, DPPH, ABTS, FRAP, and Folin-Ciocalteu methods. The results indicate that all the waste products represent desirable substrates for growing the edible fungi, with more focus on coconut coir waste (one of the principal pollution problems in Ecuador), but that also achieved the increase in the fungi's desirable characteristics. Coconut coir waste could be an environmentally friendly solution that also offers for humans additional nutritive and healthy benefits.