Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(3): 103401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183881

RESUMO

This study investigated the effects of xylanase and stimbiotic (fiber fermentation enhancer) on the response of broiler chickens fed different corn varieties and determine correlations between variables of interest. Four corn genetic varieties were selected based on their range in nutrient composition. Diets containing 600 g/kg of each corn were supplemented with 0 or 100 g/ton of xylanase or stimbiotic. A total of 1,152 one-day-old male broiler chicks (Ross 308) were divided into 12 treatments, each with 8 pens and 12 birds per pen, for a 21-day study. On d 21, performance parameters were measured, and the ileal energy and organic matter (OM) digestibility and cecal xylanase activity determined. Stimbiotic supplementation improved mFCR compared with all other treatments. There was a treatment by corn variety interaction for body weight (BW), BW gain and coefficient of variation (CV) of BW (P ≤ 0.05). Birds fed corn Variety 1 (highest neutral dietary fiber, protein and soluble arabinoxylan content) supplemented with stimbiotic had the highest BW, while Variety 2 control diet had the lowest. The BW CV in corn Variety 2 was the highest, which improved with stimbiotic supplementation. The BW CV in corn Variety 1 responded better to stimbiotic than xylanase. There were no treatment differences on BW CV in corn Varieties 3 and 4. The lowest OM digestibility was observed in birds fed corn Variety 1 with xylanase, and the highest value was associated with corn Variety 3 with xylanase (highest total arabinoxylan). Xylanase and stimbiotic supplementation increased the endogenous xylanase activity regardless of the corn variety (P ≤ 0.05). Positive correlations between corn fiber contents and phytic acid and the arabinose:xylose ratio were seen, while nonstarch polysaccharide content was negatively correlated with apparent metabolizable energy. In conclusion, corn variety influenced nutrient digestibility and broiler chicken growth. The response to supplementation with xylanase or stimbiotic varied based on the nutritional profile of corn with regards to improvements in digestibility and performance in broiler chickens.


Assuntos
Galinhas , Zea mays , Animais , Masculino , Galinhas/fisiologia , Digestão , Dieta/veterinária , Valor Nutritivo
2.
Nutrients ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364901

RESUMO

Identifying characteristics associated with fast or slow growth during early life in a pig model will help in the design of nutritional strategies or recommendations during infancy. The aim of this study was to identify if a differential growth during lactation and/or the nursery period may be associated with fecal microbiota composition and fermentation capacity, as well as to leave a print of glucocorticoid biomarkers in the hair. Seventy-five commercial male and female pigs showing extreme growth in the lactation and nursery periods were selected, creating four groups (First, lactation growth, d0−d21; second, nursery growth, d21−d62): Slow_Slow, Slow_Fast, Fast_Slow, and Fast_Fast. At d63 of life, hair and fecal samples were collected. Fast-growing pigs during nursery had higher cortisone concentrations in the hair (p < 0.05) and a tendency to have a lower cortisol-to-cortisone ratio (p = 0.061). Both lactation and nursery growth conditioned the fecal microbiota structure (p < 0.05). Additionally, fast-growing pigs during nursery had higher evenness (p < 0.05). Lactation growth influenced the relative abundance of eight bacterial genera, while nursery growth affected only two bacterial genera (p < 0.05). The fecal butyrate concentration was higher with fast growth in lactation and/or nursery (p < 0.05), suggesting it has an important role in growth, while total SCFA and acetate were related to lactation growth (p < 0.05). In conclusion, piglets' growth during nursery and, especially, the lactation period was associated with changes in their microbiota composition and fermentation capacity, evidencing the critical role of early colonization on the establishment of the adult microbiota. Additionally, cortisol conversion to cortisone was increased in animals with fast growth, but further research is necessary to determine its implications.


Assuntos
Cortisona , Microbiota , Suínos , Animais , Feminino , Masculino , Ração Animal/análise , Glucocorticoides , Hidrocortisona , Dieta , Cabelo
3.
J Anim Sci ; 100(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511683

RESUMO

Modern hyperprolific sows must deal with large litters (16-20 piglets) which reduce piglet birthweight with a concomitant increase in the proportion of small and intrauterine growth retarded piglets. However, larger litters do not only have a greater variation of piglet weights, but also a greater variation in colostrum and milk consumption within the litter. To further understand the impact that body weight has on piglets, the present study aimed to evaluate the degree of physiological weakness of the smallest piglets at birth and during the suckling period (20 d) compared to their middle-weight littermates through their jejunal gene expression. At birth, light piglets showed a downregulation of genes related to immune response (FAXDC2, HSPB1, PPARGC1α), antioxidant enzymes (SOD2m), digestive enzymes (ANPEP, IDO1, SI), and nutrient transporter (SLC39A4) (P < 0.05) but also a tendency for a higher mRNA expression of GBP1 (inflammatory regulator) and HSD11ß1 (stress hormone) genes compared to their heavier littermates (P < 0.10). Excluding HSD11ß1 gene, all these intestinal gene expression differences initially observed at birth between light and middle-weight piglets were stabilized at the end of the suckling period, when others appeared. Genes involved in barrier function (CLDN1), pro-inflammatory response (CXCL2, IL6, IDO1), and stress hormone signaling (HSD11ß1) over-expressed compared to their middle-weight littermates (P < 0.05). In conclusion, at birth and at the end of suckling period, light body weight piglets seem to have a compromised gene expression and therefore impaired nutrient absorption, immune and stress responses compared to their heavier littermates.


Under hyperprolific situations, piglets must deal with a reduced birthweight and a severe sibling competition for nutrients. Therefore, light body weight newborn and suckling piglets may also have physiological disadvantages compared to their middle-weight littermates. To further understand the impact that body weight has on piglets, the present study aimed to evaluate the degree of physiological weakness of the smallest piglets at birth and during the suckling period (20 d) compared to their middle-weight littermates through their jejunal gene expression. Newborn light piglets downregulated genes related to immunity, antioxidant, and digestive activities, but also a tendency to upregulate other genes related to inflammation and stress responses. At the end of the suckling period, those genes expression differences vanished while others appear. Light weight piglets showed lower expression of genes involved in barrier function, inflammation, and stress responses compared to their middle-weight littermates. At birth and at the end of lactation, light piglets seem to have a compromised intestinal gene expression for nutrient absorption, immune and stress responses compared to their heavier littermates.


Assuntos
Colostro , Hormônios , Animais , Animais Recém-Nascidos , Animais Lactentes , Peso ao Nascer , Peso Corporal , Feminino , Expressão Gênica , Lactação , Gravidez , Suínos/genética
4.
Front Vet Sci ; 8: 686143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722691

RESUMO

The first objective of this study was to demonstrate the usefulness of the microencapsulation technique to protect fumaric acid and thymol, avoiding their early absorption and ensuring their slow release throughout the gastrointestinal tract (GIT). For this purpose, the release of a lipid matrix microencapsulated brilliant blue (BB) was assessed in vitro, using a simulated broiler intestinal fluid, and in vivo. In vitro results showed that more than 60% of BB color reached the lower intestine, including 26.6 and 29.7% in the jejunum and ileum, respectively. The second objective was to determine the effects of microencapsulated fumaric acid, thymol, and their mixture on the performance and gut health of broilers challenged with a short-term fasting period (FP). One-day-old male ROSS 308 chickens (n = 280) were randomly distributed into seven treatments, with 10 replicates of four birds each. Dietary treatments consisted of a basal diet as negative control (NC), which was then supplemented by either non-microencapsulated fumaric acid (0.9 g/kg), thymol (0.6 g/kg), or a mixture of them. The same additive doses were also administered in a microencapsulated form (1.5 and 3 g/kg for the fumaric acid and thymol, respectively). At day 21, chickens were subjected to a 16.5-h short-term FP to induce an increase in intestinal permeability. Growth performance was assessed weekly. At day 35, ileal tissue and cecal content were collected from one bird per replicate to analyze intestinal histomorphology and microbiota, respectively. No treatment effect was observed on growth performance from day 1 to 21 (p > 0.05). Microencapsulated fumaric acid, thymol, or their mixture improved the overall FCR (feed conversion ratio) and increased ileal villi height-to-crypt depth ratio (VH:CD) (p < 0.001) on day 35 of the experiment. The microencapsulated mixture of fumaric acid and thymol increased cecal abundance of Bacteroidetes, Bacillaceae, and Rikenellaceae, while decreasing that of Pseudomonadaceae. These results indicate that the microencapsulation technique used in the current study can be useful to protect fumaric acid and thymol, avoiding early absorption, ensure their slow release throughout the GIT, and improve their effects on fasted broiler chickens.

5.
J Anim Sci ; 99(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34057466

RESUMO

The aim of the present study was to evaluate the effect of trace mineral nutrition on sow performance, mineral content, and intestinal gene expression of neonate piglets when inorganic mineral sources (ITM) were partially replaced by their organic mineral (OTM) counterparts. At 35 d postmating, under commercial conditions, a total of 240 hyperprolific multiparous sows were allocated into three experimental diets: 1) ITM: with Zn, Cu, and Mn at 80, 15, and 60 mg/kg, respectively; 2) partial replacement trace mineral source (Replace): with a 30 % replacement of ITM by OTM, resulting in ITM + OTM supplementation of Zn (56 + 24 mg/kg), Cu (10.5 + 4.5 mg/kg), and Mn (42 + 18 mg/kg); and 3) Reduce and replace mineral source (R&R): reducing a 50% of the ITM source of Zn (40 + 24 mg/kg), Cu (7.5 + 4.5 mg/kg), and Mn (30 + 18 mg/kg). At farrowing, 40 piglets were selected, based on birth weight (light: <800 g, and average: >1,200 g), for sampling. Since the present study aimed to reflect results under commercial conditions, it was difficult to get an equal parity number between the experimental diets. Overall, no differences between experimental diets on sow reproductive performance were observed. Light piglets had a lower mineral content (P < 0.05) and a downregulation of several genes (P < 0.10) involved in physiological functions compared with their average littermates. Neonate piglets born from Replace sows had an upregulation of genes involved in functions like immunity and gut barrier, compared with those born from ITM sows (P < 0.10), particularly in light piglets. In conclusion, the partial replacement of ITM by their OTM counterparts represents an alternative to the totally inorganic supplementation with improvements on neonate piglet gene expression, particularly in the smallest piglets of the litter. The lower trace mineral storage together with the greater downregulation of gut health genes exposed the immaturity and vulnerability of small piglets.


Assuntos
Oligoelementos , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Feminino , Desenvolvimento Fetal , Gravidez , Suínos
6.
J Anim Physiol Anim Nutr (Berl) ; 105(1): 59-71, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32969109

RESUMO

The present study was conducted to evaluate the effect of two Zn supplemented levels and two Zn and Cu sources (sulphate and hydroxychloride) on growing-finishing pigs. An in vitro study and an in vivo study were conducted. In the in vitro study, Zn solubility from each source at different Zn supplementation levels was evaluated, as well as the phytic phosphorus (PP) solubility derived from the interaction or not with phytic acid at similar conditions to those found in digestive tract. The most critical interaction of Zn with phytic acid was at pH 6.5 and with Zn sulphate, resulting in the reduction in PP solubility. In the in vivo experiment, a total of 444 pigs ([Duroc × Landrace]×Pietrain; initial BW: 18.7 ± 0.20 kg) were allotted to 36 pens in a randomized complete block design (2 × 2) factorial arrangement with two Zn and Cu sources and two Zn supplemental levels (20 and 80 mg/kg). The Cu supplementation was fixed at 15 mg/kg for all diets. There was no effect of the interaction between mineral source × Zn level or Zn level on growth performance or carcass characteristics (p > .10). Apparent total digestibility of Zn and Cu along with carcass yield was higher for pigs fed hydroxychloride than pigs fed the sulphate counterparts (p < .05). Feeding low levels of Zn decreased Zn (45.5%; p < .0001) and Cu(18.5%; p = .018) faecal excretion. In conclusion, under commercial conditions, feeding growing-finishing pigs with Zn levels below those established by the European Union regulation did not affect growth performance and carcass characteristics. Reducing dietary mineral (Zn and Cu) diet content resulted in a lower faecal mineral excretion. Pigs fed sulphate minerals had an improved performance during grower period, while pigs fed hydroxychloride minerals showed an improved performance during finishing period and a greater carcass yield and mineral digestibility than those fed sulphates.


Assuntos
Cobre , Zinco , Ração Animal/análise , Animais , Composição Corporal , Cobre/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Solubilidade , Suínos
7.
Anim Nutr ; 6(4): 457-466, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33364462

RESUMO

This study was to evaluate the effect of xylanase supplementation and the addition of live yeast, Saccharomyces cerevisiae, on growth performance and intestinal microbiota in piglets. One hundred and eighty commercial crossbred 23-d-old piglets (PIC 417) were sorted by initial BW and allocated to 3 treatments: control (CTR) diet, CTR diet supplemented with xylanase at 16,000 birch xylan units/kg (XYL) and XYL diet supplemented with live yeast (2 × 1010 CFU/g) at 1 kg/t (XYL + LY). Each treatment had 10 replicates, with 6 animals each. A sorghum-based diet and water were available ad libitum for 42 d of the study. Average daily gain (ADG) and average daily feed intake (ADFI) were measured from 0 to 42 d (23- to 65-d-old) and feed conversion ratio (FCR) calculated. At the end of the study, bacterial identification through 16S rRNA (V3 to V4) sequencing of the ileal and caecal digesta from one piglet per replicate was performed. No treatment effects were observed on ADFI. Pigs offered the live yeast in addition to the xylanase had increased ADG compared with those supplemented with xylanase alone (XYL + LY vs. XYL; P = 0.655). FCR was improved with XYL and XYL + LY compared with CTR (P = 0.018). Clostridiaceae counts in the ileum tended to reduce by 10% with XYL and 14% with XYL + LY compared to CTR (P = 0.07). XYL and XYL + LY increased the counts of Lactobacillaceae in the caecum compared with CTR (P < 0.0001). Dietary supplementation of live yeast combined with xylanase improved growth performance and microbial balance of piglets during the nursery phase.

8.
PLoS One ; 15(11): e0240264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33170861

RESUMO

This study investigated whether the inclusion of a stimbiotic (STB) can improve performance, influence intestinal microbiota and fermentation activity, and reduce pro-inflammatory cytokines in piglets fed a low zinc oxide diet without antimicrobial growth promotors compared to fructo-oligosaccharide (FOS) and mannan-oligosaccharide (MOS) when housed either in good sanitary (GS) or poor sanitary (PS) environments. One hundred forty-four male pigs (28-day-old) were sorted by initial body weight (BW) and allocated to one of six experimental treatments: 1) GS environment without any additive (GS-CTR); 2) GS environment with 0.01% stimbiotic (GS-STB); 3) PS environment (without cleaning and disinfection of a previously populated room) without any additive (PS-CTR); 4) PS environment with 0.01% STB (PS-STB); 5) PS environment with 0.1% MOS (PS-MOS); and 6) PS environment with 0.2% FOS (PS-FOS). Each treatment had six replicates, with four animals each. Three feeding phases, based on corn, wheat, and soybean meal were available ad libitum for the 42-days of the study. Housing piglets under PS conditions negatively influenced performance, increased plasma tumor necrosis factor alpha (TNF-α), affected the fecal microbial populations and increased concentrations of branched-chain fatty acids (BCFA) compared to GS. Stimbiotic improved 42-d-BW under PS conditions (P < 0.05) whereas MOS or FOS had no effect. On d35, plasma TNF-α was reduced with STB in PS (P < 0.05). The ratio between VFA:BCFA increased (P < 0.05) with STB, MOS or FOS in PS, and under GS condition, STB also increased the ratio. Stimbiotic increased the proportion of Clostridiales Family XIII Incertae Sedis and Clostridiaceae, while MOS and FOS increased Selenomonadaceae, Catabacteriaceae and Fibrobacteraceae. These results indicate that STB shifted the intestinal microbiome to favor fiber fermentation which likely contributed to reduced inflammatory response and improved performance, particularly in piglets reared in PS conditions.


Assuntos
Bactérias/classificação , Citocinas/metabolismo , Inflamação/dietoterapia , Oligossacarídeos/administração & dosagem , Óxido de Zinco/administração & dosagem , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Peso Corporal/efeitos dos fármacos , Fibras na Dieta , Suplementos Nutricionais , Endotoxinas/metabolismo , Fermentação , Regulação da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Abrigo para Animais , Inflamação/metabolismo , Masculino , Mananas/química , Oligossacarídeos/química , Oligossacarídeos/farmacologia , RNA Ribossômico 16S/genética , Suínos , Desmame , Óxido de Zinco/farmacologia
9.
Animals (Basel) ; 10(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080855

RESUMO

The objective of this study was to investigate the effects of particle size and xylanase supplementation in corn-based pellet diets on the performance and digestive traits in young broilers. A total of 512 male Ross 308 broilers were used in a 21-day study. The treatments were designed in a 4 × 2 factorial arrangement with four levels of geometric mean diameter (Dgw) of corn (540, 660, 1390, and 1700 µm), and two levels of xylanase (0 or 16,000 BXU/kg diet). Feeding coarse corn diets (1390 and 1700 µm Dgw) and xylanase supplementation showed an inferior coefficient of variation of body weight. Higher gizzard weight, microbiome alpha-diversity, and clustered separately beta-diversity (p < 0.05) were observed in birds fed coarse diets. The addition of xylanase promoted changes in relative bacteria abundance, increasing Lachnospiraceae, Defluviitaleaceae, Bacteroidaceae, Bacillaceae, Eggerthellaceae, and Streptococcaceae families in the 1700 µm group, and Christensenellaceae and Lachnospiraceae families in the 540 µm Dgw group. In conclusion, xylanase supplementation and particle size of corn interact in the intestinal environment, showing changes in microbial composition. Coarse diets and xylanase supplementation showed improved body weight homogeneity, which might be related to a better gut development and microbiota modulation.

10.
Animals (Basel) ; 10(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635308

RESUMO

Two feeding preference experiments and an in vitro assay were performed to assess the weaned pig preference for Cu doses and sources based on their sensorial perception and on the likely post-ingestive effects of Cu. At day 7 post-weaning, a total of 828 pigs were distributed into two different experiments. In Exp.1 (dose preference) a diet with a nutritional Cu level (15 mg/kg) of Cu sulfate (SF) was pair offered with higher Cu levels (150 mg/kg) of either SF or hydroxychloride (HCl). In Exp.2 (source preference), a diet supplemented with Cu-SF at 150 mg/kg was compared to a Cu-HCl (150 mg/kg) diet. At the short-term (day 7-9) and for the entire experimental week (day 7-14), pigs preferred diets with a high Cu level than with Cu at a nutritional dose (p < 0.05). Likewise, pigs preferred diets supplemented with a Cu-HCl source compared to diets with Cu-SF (p < 0.05). In vitro assay results showed a greater solubility and interaction of Cu-SF with phytic acid compared to Cu-HCl. In conclusion, pigs chose diets with higher levels of Cu probably to re-establish homeostasis after weaning. Pigs preferred diets with Cu-HCl compared to Cu-SF probably due to their solubilities and chemical differences.

11.
J Anim Sci ; 98(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32277238

RESUMO

A 42-d experiment was conducted to evaluate the effect of Cu and Zn source and Cu level on pig performance, mineral status, bacterial modulation, and the presence of antimicrobial-resistant genes in isolates of Enterococcus spp. At weaning, 528 pigs (5.9 ± 0.50 kg) were allotted to 48 pens of a randomized complete block design in a 2 × 2 factorial arrangement with two Cu and Zn sources (SF: sulfate and HCl: hydroxychloride) and two Cu levels (15 and 160 mg/kg). As a challenge, the pigs were reared in dirty pens used by a previous commercial batch. Two-phase diets were offered: the pre-starter (PS) phase from day 1 to 14 and the starter phase (ST) from day 14 to 42. At days 14 and 42, pigs were individually weighed and blood samples from one pig per pen were taken. At the end of the experiment, one pig per pen was euthanized to collect the samples. Feeding high levels of Cu increased body weight (BW) from 16.6 to 17.7 kg (P < 0.001). Furthermore, average daily gain, gain to feed (G:F) ratio, average daily feed intake (ADFI), and mineral status were enhanced with Cu at 160 mg/kg (P < 0.05) compared with Cu at 15 mg/kg. There was no effect of the interaction between source × level on any of the growth performance responses except for ADFI (P = 0.004) and G:F (P = 0.029) at the end of the ST period and for G:F (P = 0.006) for entire nursery period (day 0 to 42). At the end of the ST period, pigs fed Cu at 160 mg/kg as HCl had not only higher ADFI but also lower G:F than those fed Cu as SF at 160 mg/kg. Meanwhile, for the entire nursery period, G:F did not differ between pigs fed Cu at 160 mg/kg as HCl or SF. In colonic digesta, the relative abundance of Streptococcus, Enterobacter, Escherichia, among others, decreased (P-adjust < 0.05), while Lachnospira and Roseburia tended (P-adjust < 0.10) to increase in pigs fed Cu at 160 mg/kg as HCl compared with those fed Cu SF at 160 mg/kg. An increase (P-adjust < 0.05) in Methanosphaera and Roseburia was observed in pigs fed Cu at 160 mg/kg. From colon digesta, Enterococcus spp. was isolated in 40 samples, being E. faecalis the most dominating (65%) regardless of the experimental diet. Genes of ermB (7.5%) and tetM (5%) were identified. No genes for Cu (tcrB) or vancomycin (vanA, vanB, vanC1, and vanC2) were detected. In conclusion, European Union permissible levels of Cu (160 mg/kg), of both sources, were able to increase performance, mineral status, and bacterial modulation compared with nutritional level. Different effects on growth performance, mineral tissue content, and microbial modulation were observed between Cu and Zn sources.


Assuntos
Cobre/farmacologia , Farmacorresistência Bacteriana/genética , Enterococcus/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos/fisiologia , Zinco/farmacologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Peso Corporal/efeitos dos fármacos , Dieta/veterinária , Enterococcus/isolamento & purificação , Feminino , Microbioma Gastrointestinal/genética , Masculino , Distribuição Aleatória , Suínos/genética , Suínos/crescimento & desenvolvimento , Suínos/microbiologia , Desmame
12.
Animals (Basel) ; 10(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041160

RESUMO

An experiment was performed to evaluate the effect of four different microencapsulated blends of organic acids (OA) and nature-identical aromatic compounds (AC) on growth performance and gut health of broilers challenged with a recycled NE litter. A total of 600 one-day-old male Ross 308 broilers were randomly assigned to five treatments consisting of a basal diet (as negative control) supplemented with each of the tested microencapsulated blends: OA1 (malic and fumaric acid) + AC; 2.5 g/kg; OA2 (calcium butyrate+fumaric acid) + AC; 1.7 g/kg; MCFA (capric-caprylic; caproic and lauric acid) + AC; 2 g/kg; and MCFA + OA3(calcium butyrate + fumaric and citric acid) + AC; 1.5 g/kg. The AC used was the same for all treatments; including cinnamaldehyde, carvacrol, and thymol (8:1:1), as major compounds. Three tested blends enhanced growth performance by improving intestinal histomorphology (p < 0.001). The tested blends enhanced the abundance of some beneficial families such as Ruminococcaceae and Lachnospiraceae; while reducing that of harmful ones such as Enterobacteriaceae and Helicobacteraceae. A further dose-response experiment showed that 0.5 g/kg of the blend 2 and 2 g/kg of the blend 4 improved growth performance and intestinal histomorphology of chickens on d 42 and decreased fecal Enterobacteriaceae and C. perfringens counts. Similar effects to the previous experiment were observed for cecum microbiota.

13.
Anaerobe ; 57: 55-58, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30898637

RESUMO

The present study focused on detecting the presence of Clostridium difficile on veterinary hospital surfaces of large and small animal areas at the Universidad Complutense of Madrid. Isolated C. difficile strains were further characterized and investigated for antimicrobial susceptibility testing. Of n = 23 sampling area, 17% were positive for the presence of C. difficile. The isolates belonged to PCR ribotypes 078, 014, 039, and 154, of which RT 078 and 014 are also frequently found as human pathogens. Two isolates had high level resistance to metronidazole. These results suggest that the veterinary hospital environment constitutes a potential reservoir of zoonotical transferable C. difficile.


Assuntos
Clostridioides difficile/isolamento & purificação , Microbiologia Ambiental , Animais , Antibacterianos/farmacologia , Clostridioides difficile/classificação , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Farmacorresistência Bacteriana , Hospitais Veterinários , Hospitais de Ensino , Testes de Sensibilidade Microbiana , Ribotipagem , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...