Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Prev Cardiol ; 22(4): 468-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24659026

RESUMO

AIMS: Why South Asians are at increased risk of premature atherosclerotic cardiovascular diseases compared with other ethnic groups is not fully understood. Atherogenic dyslipoproteinemia - hypertriglyceridemia, elevated numbers of low-density lipoprotein (LDL) particles and low high-density lipoprotein cholesterol (HDL-C) - is more common in South Asians but the mechanisms responsible have not been explicated. Here we examined whether the circulating lipid transfer protein, cholesteryl ester transfer protein (CETP), plays a role in the pathogenesis of the atherogenic dyslipoproteinemia among South Asians. METHODS AND RESULTS: CETP activity was determined by exogenous substrate assay in the serum of healthy, metabolically well-characterized individuals of South Asian and European descent (N = 244 and 238, respectively). Serum and lipoprotein lipids and apolipoproteins were measured and lipoprotein particle number and size were quantified via nuclear magnetic resonance spectroscopy. All the elements of the atherogenic dyslipoproteinemia were more severe in South Asians and CETP activity was significantly greater by 30% in South Asians compared with Europeans, adjusted for age, sex, body mass index and waist circumference (p < 0.0001). CETP activity was directly associated with serum triglycerides and inversely with HDL-C in the whole population. CETP activity was also directly related to apoB and LDL particle number. Finally, increased CETP activity was associated with pro-atherogenic reductions in HDL and LDL particle size. CONCLUSIONS: We identified novel associations between elevated CETP activity and the triad of quantitative and qualitative lipoprotein abnormalities in the atherogenic dyslipidemia in South Asians, a major contributor of increased atherosclerotic cardiovascular diseases in South Asians.


Assuntos
Povo Asiático , Aterosclerose/sangue , Aterosclerose/etnologia , Proteínas de Transferência de Ésteres de Colesterol/sangue , Dislipidemias/sangue , Dislipidemias/etnologia , Adulto , Idoso , Ásia/etnologia , Aterosclerose/diagnóstico , Biomarcadores/sangue , Canadá/epidemiologia , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos Transversais , Dislipidemias/diagnóstico , Europa (Continente)/etnologia , Feminino , Disparidades nos Níveis de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Índice de Gravidade de Doença , Triglicerídeos/sangue , Regulação para Cima , População Branca
2.
Expert Rev Cardiovasc Ther ; 12(10): 1137-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25244623

RESUMO

The proof of concept that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition affects cholesterol levels was first established after the demonstration that PCSK9 loss-of-function mutations result in a significant drop in circulating LDL cholesterol levels. Subsequent studies revealed that PCSK9 binds the epidermal growth factor precursor homology domain-A on the surface LDL Receptor (LDLR) and directs LDLR and PCSK9 for lysosomal degradation. Alirocumab (also known as SAR236553/REGN727) is a monoclonal antibody that binds circulating PCSK9 and blocks its interactions with surface LDLR. Alirocumab clinical trials with different doses on different administration schedules were shown to significantly reduce LDL cholesterol both as a mono-therapy and in combination with statins or ezetimibe. Although there is great potential for anti-PCSK9 therapies in the management of cholesterol metabolism, there is no clear evidence yet that blocking PCSK9 reduces cardiovascular disease outcome. This is being investigated in ongoing Phase III clinical trials with alirocumab.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Pró-Proteína Convertases/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Anticolesterolemiantes/farmacologia , LDL-Colesterol/sangue , Ensaios Clínicos como Assunto , Quimioterapia Combinada , Humanos , Pró-Proteína Convertase 9 , Receptores de LDL/metabolismo , Serina Endopeptidases
3.
J Am Coll Cardiol ; 59(19): 1697-705, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22554600

RESUMO

OBJECTIVES: In this study, our goal was to determine if human resistin plays a role in regulating the uptake of atherogenic low-density lipoproteins in human hepatocytes. BACKGROUND: Serum levels of resistin, an adipose tissue-derived adipokine, are increased in human obesity and are positively correlated with atherosclerotic cardiovascular diseases. However, the function of resistin in humans is enigmatic. METHODS: Human hepatocytes (HepG2 and primary) were treated (24 h) with the following: 1) purified human resistin at various concentrations, with and without lovastatin; and 2) obese human serum with elevated resistin levels or serum from which resistin was removed via antibody-immunoprecipitation. The effect of the treatments on cellular low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) messenger ribonucleic acid and protein levels were determined by using real-time polymerase chain reaction and Western blotting, respectively. RESULTS: Resistin, at physiological levels observed in human obesity, down-regulated hepatocyte LDLR expression substantially (by 40%). A key mechanism by which human resistin inhibited LDLR levels was by increased cellular expression of the recently identified protease, PCSK9, which enhances intracellular LDLR lysosomal degradation. The quantitatively important role of human resistin in LDLR expression was demonstrated by antibody-immunoprecipitation removal of resistin in human serum, which decreased serum stimulation of hepatocyte LDLRs markedly (by 80%). Furthermore, resistin diminished statin-mediated up-regulation of the LDLR by 60%, implicating resistin in the relative ineffectiveness of statins in selective target populations. CONCLUSIONS: These results reveal for the first time that resistin is a highly attractive therapeutic target in ameliorating elevated serum low-density lipoprotein and, thereby, atherosclerotic cardiovascular diseases in obese humans.


Assuntos
Dislipidemias/metabolismo , Hepatócitos/metabolismo , Pró-Proteína Convertases/metabolismo , Receptores de LDL/antagonistas & inibidores , Resistina/biossíntese , Subtilisina/biossíntese , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Imunoprecipitação , Lovastatina/farmacologia , Modelos Biológicos , Obesidade/sangue , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptores de LDL/metabolismo
4.
Circ Res ; 108(6): 727-42, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21293001

RESUMO

RATIONALE: Obese individuals are at high risk for developing atherosclerosis primarily attributable to elevated plasma concentrations of apolipoprotein (apo)B-containing particles, including very-low-density lipoprotein (VLDL). Plasma levels of the adipose tissue adipokine resistin are increased in human obesity, and resistin expression is positively correlated with coronary atherosclerosis and VLDL levels. OBJECTIVE: We sought to determine for the first time whether resistin directly stimulates human hepatocyte production of apoB-containing particles and to elucidate the mechanisms responsible. METHODS AND RESULTS: Treatment of human hepatocytes with resistin at levels observed in human obesity stimulated apoB secretion up to 10-fold, because of increased microsomal triglyceride transfer protein (MTP) activity and decreased expression/phosphorylation of proteins in the insulin signaling pathways (insulin receptor substrate-2, Akt, and extracellular signal-regulated kinase). Resistin also increased hepatocyte lipid content by stimulating de novo lipogenesis via the SREBP1 and SREBP2 pathways. Furthermore, obese serum with elevated resistin levels induced greater hepatocyte stimulation of apoB secretion than lean human serum, an effect that was ameliorated by antibody immunoprecipitation removal of serum resistin. CONCLUSIONS: Resistin has a direct deleterious impact on human hepatic lipid and lipoprotein regulation. Resistin greatly increased hepatocyte VLDL apoB and lipid secretion because of MTP activation and induction of hepatocyte insulin resistance. Conversely, antibody removal of serum resistin ameliorated human serum stimulation of apoB secretion. Increased hepatic cellular lipids mediated by resistin reflects the fatty liver/steatosis observed with elevated resistin in humans. Thus, human resistin is a novel therapeutic target for mitigating common hepatic pathophysiological processes associated with human obesity, dyslipidemia and atherosclerosis.


Assuntos
Apolipoproteínas B/metabolismo , Insulina/metabolismo , Membranas Intracelulares/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Resistina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Animais , Apolipoproteínas B/genética , Proteínas de Transporte/metabolismo , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Fígado Gorduroso/etiologia , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/fisiopatologia , Camundongos , RNA Mensageiro/metabolismo , Ratos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Regulação para Cima/efeitos dos fármacos
5.
Mol Biochem Parasitol ; 151(1): 100-10, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17125854

RESUMO

Parasites from the protozoan phylum Apicomplexa are responsible for diseases, such as malaria, toxoplasmosis and cryptosporidiosis, all of which have significantly higher rates of mortality and morbidity in economically underdeveloped regions of the world. Advances in vaccine development and drug discovery are urgently needed to control these diseases and can be facilitated by production of purified recombinant proteins from Apicomplexan genomes and determination of their 3D structures. To date, both heterologous expression and crystallization of Apicomplexan proteins have seen only limited success. In an effort to explore the effectiveness of producing and crystallizing proteins on a genome-scale using a standardized methodology, over 400 distinct Plasmodium falciparum target genes were chosen representing different cellular classes, along with select orthologues from four other Plasmodium species as well as Cryptosporidium parvum and Toxoplasma gondii. From a total of 1008 genes from the seven genomes, 304 (30.2%) produced purified soluble proteins and 97 (9.6%) crystallized, culminating in 36 crystal structures. These results demonstrate that, contrary to previous findings, a standardized platform using Escherichia coli can be effective for genome-scale production and crystallography of Apicomplexan proteins. Predictably, orthologous proteins from different Apicomplexan genomes behaved differently in expression, purification and crystallization, although the overall success rates of Plasmodium orthologues do not differ significantly. Their differences were effectively exploited to elevate the overall productivity to levels comparable to the most successful ongoing structural genomics projects: 229 of the 468 target genes produced purified soluble protein from one or more organisms, with 80 and 32 of the purified targets, respectively, leading to crystals and ultimately structures from one or more orthologues.


Assuntos
Genoma de Protozoário/genética , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Animais , Cristalização , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Plasmodium falciparum/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...