Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 2(1): 18-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121890

RESUMO

Innate pattern recognition receptor agonists, including Toll-like receptors (TLRs), alter the tumor microenvironment and prime adaptive antitumor immunity. However, TLR agonists present toxicities associated with widespread immune activation after systemic administration. To design a TLR-based therapeutic suitable for systemic delivery and capable of safely eliciting tumor-targeted responses, we developed immune-stimulating antibody conjugates (ISACs) comprising a TLR7/8 dual agonist conjugated to tumor-targeting antibodies. Systemically administered human epidermal growth factor receptor 2 (HER2)-targeted ISACs were well tolerated and triggered a localized immune response in the tumor microenvironment that resulted in tumor clearance and immunological memory. Mechanistically, ISACs required tumor antigen recognition, Fcγ-receptor-dependent phagocytosis and TLR-mediated activation to drive tumor killing by myeloid cells and subsequent T-cell-mediated antitumor immunity. ISAC-mediated immunological memory was not limited to the HER2 ISAC target antigen since ISAC-treated mice were protected from rechallenge with the HER2- parental tumor. These results provide a strong rationale for the clinical development of ISACs.


Assuntos
Imunoterapia , Neoplasias , Imunidade Adaptativa , Animais , Antígenos de Neoplasias , Imunoterapia/métodos , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
PLoS One ; 8(3): e58966, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505568

RESUMO

Improper regulation of B cell responses leads to excessive production of antibodies and contributes to the development of autoimmune disease. T helper 17 (Th17) cells also drive the development of autoimmune disease, but the role of B cells in shaping Th17 cell-mediated immune responses, as well as the reciprocal regulation of B cell responses by IL-17 family cytokines, remains unclear. The aim of this study was to characterize the regulation of IL-17A and IL-17F in a model of T cell-dependent B cell activation. Stimulation of primary human B cell and peripheral blood mononuclear cell (BT) co-cultures with α-IgM and a non-mitogenic concentration of superantigens for three days promoted a Th17 cell response as evidenced by increased expression of Th17-related gene transcripts, including Il17f, Il21, Il22, and Il23r, in CD4 T cells, as well as the secretion of IL-17A and IL-17F protein. We tested the ability of 144 pharmacologic modulators representing 91 different targets or pathways to regulate IL-17A and IL-17F production in these stimulated BT co-cultures. IL-17A production was found to be preferentially sensitive to inhibition of the PI3K/mTOR pathway, while prostaglandin EP receptor agonists, including PGE2, increased IL-17A concentrations. In contrast, the production of IL-17F was inhibited by PGE2, but selectively increased by TLR2 and TLR5 agonists. These results indicate that IL-17A regulation is distinct from IL-17F in stimulated BT co-cultures and that this co-culture approach can be used to identify pathway mechanisms and novel agents that selectively inhibit production of IL-17A or IL-17F.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Interleucina-17/metabolismo , Ativação Linfocitária/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Calcitriol/farmacologia , Comunicação Celular , Técnicas de Cocultura , Humanos , Imunofenotipagem , Interleucina-17/genética , Fenótipo , Piperazinas/farmacologia , Cultura Primária de Células , Propanóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo
3.
J Pharmacol Toxicol Methods ; 61(1): 3-15, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19879948

RESUMO

INTRODUCTION: The ability to predict the health effects resulting from drug or chemical exposure has been challenging due to the complexity of human biology. Approaches that detect and discriminate a broad range of mechanisms in testing formats that are predictive and yet cost-effective are needed. METHODS: Here, we evaluated the performance of BioMAP systems, primary human cell-based disease models, as a platform for characterization of chemical toxicity mechanisms. For this we tested a set of compounds with known or well-studied mechanisms in a panel of 8 BioMAP assays relevant to human respiratory, skin, immune and vascular exposure sites. RESULTS: We evaluated the ability to detect and distinguish compounds based on mechanisms of action, comparing the BioMAP activity profiles generated in a reduced sample number format to reference database profiles derived from multiple experiments. We also studied the role of BioMAP assay panel size and concentration effects, both of which were found to contribute to the ability to discriminate chemicals and mechanisms. DISCUSSION: Compounds with diverse mechanisms, including modulators of the NFkappaB pathway, microtubule function and mitochondrial activity, could be discriminated and classified into target and pathway mechanisms in both assay formats. Certain inhibitors of mitochondrial function, such as rotenone and sodium azide, but not others, were classified with inducers of endoplasmic reticulum stress, providing insight into the toxicity mechanisms of these agents. This method may have utility in classifying novel agents with unknown modes of action according to their effects on toxicity pathways.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Exposição Ambiental/efeitos adversos , Noxas/classificação , Preparações Farmacêuticas/classificação , Testes de Toxicidade , Biomarcadores , Técnicas de Cultura de Células/economia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Microtúbulos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , NF-kappa B/agonistas , NF-kappa B/antagonistas & inibidores
4.
Assay Drug Dev Technol ; 2(4): 431-41, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15357924

RESUMO

Rapid, quantitative methods for characterizing the biological activities of kinase inhibitors in complex human cell systems could allow the biological consequences of differential target selectivity to be monitored early in development, improving the selection of drug candidates. We have previously shown that Biologically Multiplexed Activity Profiling (BioMAP) permits rapid characterization of drug function based on statistical analysis of protein expression data sets from complex primary human cellbased models of disease biology. Here, using four such model systems containing primary human endothelial cells and peripheral blood mononuclear cells in which multiple signaling pathways relevant to inflammation and immune responses are simultaneously activated, we demonstrate that BioMAP analysis can detect and distinguish a wide range of inhibitors directed against different kinase targets. Using a panel of p38 mitogen-activated protein kinase antagonists as a test set, we show further that related compounds can be distinguished by unique features of the biological responses they induce in complex systems, and can be classified according to their induction of shared (on-target) and secondary activities. Statistical comparisons of quantitative BioMAP profiles and analysis of profile features allow correlation of induced biological effects with chemical structure and mapping of biological responses to chemical series or substituents on a common scaffold. Integration of automated BioMAP analysis for prioritization of hits and for structure-activity relationship studies may improve and accelerate the design and selection of optimal therapeutic candidates.


Assuntos
Sistemas de Liberação de Medicamentos , Endotélio Vascular/enzimologia , Perfilação da Expressão Gênica/métodos , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/química , Animais , Células Cultivadas , Eletroporação , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , Relação Estrutura-Atividade , Transfecção
5.
FASEB J ; 18(11): 1279-81, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15208272

RESUMO

Unexpected drug activities discovered during clinical testing establish the need for better characterization of compounds in human disease-relevant conditions early in the discovery process. Here, we describe an approach to characterize drug function based on statistical analysis of protein expression datasets from multiple primary human cell-based models of inflammatory disease. This approach, termed Biologically Multiplexed Activity Profiling (BioMAP), provides rapid characterization of drug function, including mechanism of action, secondary or off-target activities, and insights into clinical phenomena. Using three model systems containing primary human endothelial cells and peripheral blood mononuclear cells in different environments relevant to vascular inflammation and immune activation, we show that BioMAP profiles detect and discriminate multiple functional drug classes, including glucocorticoids; TNF-alpha antagonists; and inhibitors of HMG-CoA reductase, calcineurin, IMPDH, PDE4, PI-3 kinase, hsp90, and p38 MAPK, among others. The ability of cholesterol lowering HMG-CoA reductase inhibitors (statins) to improve outcomes in rheumatic disease patients correlates with the activities of these compounds in our BioMAP assays. In addition, the activity profiles identified for the immunosuppressants mycophenolic acid, cyclosporin A, and FK-506 provide a potential explanation for a reduced incidence of posttransplant cardiovascular disease in patients receiving mycophenolic acid. BioMAP profiling can allow integration of meaningful human biology into drug development programs.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Vasculite/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Células Cultivadas/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/antagonistas & inibidores , Desenho de Fármacos , Endotélio Vascular/citologia , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunossupressores/farmacologia , Modelos Biológicos , Preparações Farmacêuticas/classificação , RNA Interferente Pequeno/farmacologia , Transfecção , Veias Umbilicais
6.
Proc Natl Acad Sci U S A ; 101(5): 1223-8, 2004 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-14745015

RESUMO

Now that the human genome has been sequenced, the challenge of assigning function to human genes has become acute. Existing approaches using microarrays or proteomics frequently generate very large volumes of data not directly related to biological function, making interpretation difficult. Here, we describe a technique for integrative systems biology in which: (i) primary cells are cultured under biologically meaningful conditions; (ii) a limited number of biologically meaningful readouts are measured; and (iii) the results obtained under several different conditions are combined for analysis. Studies of human endothelial cells overexpressing different signaling molecules under multiple inflammatory conditions show that this system can capture a remarkable range of functions by a relatively small number of simple measurements. In particular, measurement of seven different protein levels by ELISA under four different conditions is capable of reconstructing pathway associations of 25 different proteins representing four known signaling pathways, implicating additional participants in the NF-kappaBorRAS/mitogen-activated protein kinase pathways and defining additional interactions between these pathways.


Assuntos
Transdução de Sinais/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Interferon gama/farmacologia , Interleucina-1/farmacologia , Sistema de Sinalização das MAP Quinases , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...