Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-23221223

RESUMO

Acoustically coupled thin-film bulk acoustic wave resonator filters, in which the coupling takes place mechanically in the lateral direction between closely-spaced narrow resonators, are a promising approach to passband filtering at gigahertz frequencies. In this paper, filters with interdigital electrode structures are studied. Electrode number, electrode width, and coupling gap width are varied. The resonators are solidly mounted, having an acoustic mirror isolating the resonator from a Si substrate and providing the means to engineer the acoustic dispersion properties of the resonators. The center frequency of the filters is around 2 GHz. Electrical frequency responses of the filters are measured and the strength of the lateral acoustic coupling is calculated from the measurements. The effects of device parameters on the acoustic coupling and the obtainable filter bandwidth are analyzed in detail. A bandpass filter with 4.9% bandwidth, minimum insertion loss of 2 dB and sharp transition from passband to suppression band, is presented.

2.
Artigo em Inglês | MEDLINE | ID: mdl-22481792

RESUMO

Acoustic wave fields in a thin-film bulk acoustic wave resonator are studied using a heterodyne laser interferometer. The measurement area is extended outside the active electrode region of the resonator, so that wave fields in both the active and surrounding regions can be characterized. At frequencies at which the region surrounding the resonator does not support laterally propagating acoustic waves, the analysis of the measurement data shows exponentially decaying amplitude fields outside the active resonator area, as suggested by theory. The magnitude of the imaginary wave vectors is determined by fitting an exponential function to the measured amplitude data, and thereby the experimentally determined dispersion diagram is extended into the region of imaginary wave numbers.


Assuntos
Acústica/instrumentação , Algoritmos , Interferometria/instrumentação , Lasers , Espalhamento de Radiação , Vibração
3.
Artigo em Inglês | MEDLINE | ID: mdl-21041141

RESUMO

A 2-D model is developed for calculating lateral acoustical coupling between adjacent thin film BAW resonators forming an electrical N-port. The model is based on solution and superposition of lateral eigenmodes and eigenfrequencies in a structure consisting of adjacent regions with known plate wave dispersion properties. Mechanical and electrical response of the device are calculated as a superposition of eigenmodes according to voltage drive at one electrical port at a time while extracting current induced in the other ports, leading to a full Y-parameter description of the device. Exemplary cases are simulated to show the usefulness of the model in the study of the basic design rules of laterally coupled thin film BAW resonator filters. Model predictions are compared to an experimental 1.9-GHz band-pass filter based on aluminum nitride thin film technology and lateral acoustical coupling. Good agreement is obtained in prediction of passband behavior. The eigenmode-based model forms a useful tool for fast simulation of laterally coupled acoustic devices. It allows one to gain insight into basic device physics in a very intuitive fashion compared with more detailed but heavier finite element method. Shortcomings of this model and possible improvements are discussed.

4.
Phys Rev Lett ; 105(12): 125501, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20867653

RESUMO

The authors describe how acoustic phonons can directly tunnel through vacuum and, therefore, transmit energy and conduct heat between bodies that are separated by a vacuum gap. This effect is enabled by introducing a coupling mechanism, such as piezoelectricity, that strongly couples electric field and lattice deformation. The electric field leaks into the vacuum as an evanescent field, which leads to finite solid-vacuum-solid transmission probability. Because of strong resonances in the system, some phonons can go through the vacuum gap with (or close to) unity transmission, which leads to significant thermal conductance and heat flux.

5.
Artigo em Inglês | MEDLINE | ID: mdl-19574136

RESUMO

This correspondence presents an estimator for reflective delay line-type surface acoustic wave (SAW) sensors. The estimator is derived from an analytical model and its range of validity is discussed. The proposed estimator enables simultaneous access to several SAW sensors with time-orthogonal responses and it can be implemented in a computationally efficient way utilizing the fast Fourier transform algorithm. The estimator is experimentally verified and its performance is compared with that of a reference estimator.


Assuntos
Acústica/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
6.
Artigo em Inglês | MEDLINE | ID: mdl-19049933

RESUMO

This correspondence presents an optimized frequency modulated continuous-wave (FMCW) interrogation procedure for reflective delay line-type SAW sensors. In this method, the time delays between reflections are obtained with Fourier transform from optimally windowed frequency response. Optimal window functions maximize the signal-tointerference ratio at chosen temporal points of interest. The method is experimentally verified and its accuracy is compared with that of a Fourier transform from Hamming-windowed frequency response.


Assuntos
Acústica/instrumentação , Algoritmos , Desenho Assistido por Computador , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Fourier , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
7.
Artigo em Inglês | MEDLINE | ID: mdl-17375835

RESUMO

A novel surface acoustic wave filter on a leaky-wave substrate is studied. It features a hiccup-type resonance occurring around a distributed gap between two long interdigital transducers. Compared to a classical coupled resonator filter, it enables a relatively narrow passband (1% to 2% of center frequency) with low insertion loss, steep skirts, and improved suppression levels. The structure consists of long transducers having the number of fingers greater than 1/K2 and 1/kappa where K2 is the coupling coefficient of the substrate material and kappa is the reflectivity per wavelength, separated with short transducer sections constituting a distributed gap. A strong, localized resonance is formed in the gap region, in addition to the resonance arising in the long structures-hence, the name double-resonance filter. The substrate studied here is 42 degrees-rotated lithium tantalite. We show experimental results for both single-ended and unbalanced-to-balanced filters at 1.6 GHz, having a minimum insertion loss of 1.07 dB, suppressions of 30 dB, and absolute -3-dB bandwidth of 29 MHz (1.9% of the center frequency). For the balanced device, the amplitude imbalance over the passband ranges from -0.6 dB to 2 dB and the phase imbalance from 1 degrees to 4.5 degrees. Furthermore, we have measured the acoustical power distributions using a scanning laser interferometer, and we compare these results with the profiles simulated using a coupling-of-modes model.


Assuntos
Acústica/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Propriedades de Superfície
8.
Artigo em Inglês | MEDLINE | ID: mdl-17225811

RESUMO

The concept of coupled resonators is applied to synthesize surface acoustic wave filters. Employing two parallel-connected filter tracks, with a frequency shift imposed between them, a wide passband with low insertion loss together with well-controlled rejections is achieved. The operation of the two-track device is based on the mutual interaction of the individual transfer functions for the pair of tracks. Each track serves to contribute a part of the passband, enabling a wide band. Outside of the passband, the signals passing through the two channels may cancel each other, thus facilitating efficient control over the rejections. However, obtaining rejection stopbands at just the predetermined frequencies requires precise values for the materials parameters and a reliable fabrication process. Prototype devices fabricated with this approach are demonstrated both on quartz and, for the first time, on 42 degrees-LiTaO3. Results for two-track devices having either two or three transducers per track and operating either single-ended or with a balanced output are presented. The devices are designed employing the coupling-of-modes model and transmission-matrix approach, and the separate tracks are optimized simultaneously and independently. The center frequencies are 868 MHz and 1960 MHz. On quartz, a minimum insertion loss of 4 dB and a passband width of 0.23% are achieved at 868 MHz. On 42 degrees-LiTaO3, the corresponding figures of merit are 1.3 dB for minimum insertion loss and 4.1% bandwidth at 1960 MHz. The filters on 42 degrees-LiTaO3 also have remarkably flat passbands.


Assuntos
Acústica/instrumentação , Desenho Assistido por Computador , Eletrônica/instrumentação , Modelos Teóricos , Transdutores , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Vibração
9.
Artigo em Inglês | MEDLINE | ID: mdl-16118982

RESUMO

Longitudinally coupled resonator filters provide unbalanced-balanced operation with wide bandwidth, low loss, and high suppression levels. However, reducing the insertion loss in the 1.8-2.2 GHz range remains a challenging problem because at high frequencies the resistive losses arising from the relatively wide aperture of the filter may degrade the performance. A 5-interdigital transducer (IDT) filter has six gaps at which the periodicity of the grating is broken, resulting in additional loss due to scattering into the bulk. In this paper, we show that replacing the gaps between the transducers with short transducer sections having their pitch different from that of the main transducers reduces the insertion loss of the device. We present devices with balun operation at 1842 MHz with wide bandwidth of 4.5% and -40 dB suppression, with a minimum insertion loss less than 1 dB in the best devices, and a maximum insertion loss of -1.2 dB in the passband. The passband is quite flat, with <1 dB ripple. We also discuss the layout of the contact pads and the connections, and its effect on the device performance and balance characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...