Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 17(5): 871-888, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29438996

RESUMO

Proteomics studies have revealed that SUMOylation is a widely used post-translational modification (PTM) in eukaryotes. However, how SUMO E1/2/3 complexes use different SUMO isoforms and recognize substrates remains largely unknown. Using a human proteome microarray-based activity screen, we identified over 2500 proteins that undergo SUMO E3-dependent SUMOylation. We next constructed a SUMO isoform- and E3 ligase-dependent enzyme-substrate relationship network. Protein kinases were significantly enriched among SUMOylation substrates, suggesting crosstalk between phosphorylation and SUMOylation. Cell-based analyses of tyrosine kinase, PYK2, revealed that SUMOylation at four lysine residues promoted PYK2 autophosphorylation at tyrosine 402, which in turn enhanced its interaction with SRC and full activation of the SRC-PYK2 complex. SUMOylation on WT but not the 4KR mutant of PYK2 further elevated phosphorylation of the downstream components in the focal adhesion pathway, such as paxillin and Erk1/2, leading to significantly enhanced cell migration during wound healing. These studies illustrate how our SUMO E3 ligase-substrate network can be used to explore crosstalk between SUMOylation and other PTMs in many biological processes.


Assuntos
Movimento Celular , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Sequência de Aminoácidos , Células HeLa , Humanos , Fosforilação , Fosfotirosina/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteômica , Reprodutibilidade dos Testes , Transdução de Sinais , Especificidade por Substrato , Ubiquitina-Proteína Ligases/metabolismo
2.
PLoS Genet ; 13(2): e1006612, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28166236

RESUMO

Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein. By screening this library using plate-based assays, we have generated a comprehensive structure-function based map of Smt3, revealing essential amino acid residues and residues critical for function under a variety of genotoxic and proteotoxic stress conditions. Functionally important residues mapped to surfaces affecting Smt3 precursor processing and deconjugation from protein substrates, covalent conjugation to protein substrates, and non-covalent interactions with E3 ligases and downstream effector proteins containing SUMO-interacting motifs. Lysine residues potentially involved in formation of polymeric chains were also investigated, revealing critical roles for polymeric chains, but redundancy in specific chain linkages. Collectively, our findings provide important insights into the molecular basis of signaling through sumoylation. Moreover, the library of Smt3 mutants represents a valuable resource for further exploring the functions of sumoylation in cellular stress response and other SUMO-dependent pathways.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Relação Estrutura-Atividade , Sumoilação/efeitos dos fármacos , Substituição de Aminoácidos/genética , Análise Mutacional de DNA , Mutagênese/genética , Mutagênicos/toxicidade , Ligação Proteica , Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligases/genética
3.
G3 (Bethesda) ; 6(4): 881-92, 2016 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-26837954

RESUMO

The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating.


Assuntos
Código de Barras de DNA Taxonômico , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Feromônios/farmacologia , Leveduras/efeitos dos fármacos , Leveduras/genética , Expressão Gênica , Técnicas de Inativação de Genes , Genes Reporter , Vetores Genéticos/genética , Fator de Acasalamento/genética , Fator de Acasalamento/metabolismo , Modelos Biológicos , Mutação , Leveduras/classificação , Leveduras/metabolismo
4.
Methods Mol Biol ; 416: 221-47, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18392971

RESUMO

Comprehensive collections of open reading frame (ORF) deletion mutant strains exist for the budding yeast Saccharomyces cerevisiae. With great prescience, these strains were designed with short molecular bar codes or TAGs that uniquely mark each deletion allele, flanked by shared priming sequences. These features have enabled researchers to handle yeast mutant collections as complex pools of approximately 6000 strains. The presence of any individual mutant within a pool can be assessed indirectly by measuring the relative abundance of its corresponding TAG(s) in genomic DNA prepared from the pool. This is readily accomplished by wholesale polymerase chain reaction (PCR) amplification of the TAGs using fluorescent oligonucleotide primers that recognize the common flanking sequences, followed by hybridization of the labeled PCR products to a TAG oligonucleotide microarray. Here we describe a method-diploid-based synthetic lethality analysis by microarray (dSLAM)-whereby such pools can be manipulated to rapidly construct and assess the fitness of 6000 double-mutant strains in a single experiment. Analysis of double-mutant strains is of growing importance in defining the spectrum of essential cellular functionalities and in understanding how these functionalities interrelate.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Genes Letais , Mutação/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Saccharomyces cerevisiae/genética , Deleção de Genes , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico
5.
Methods ; 41(2): 206-21, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17189863

RESUMO

Analysis of genetic interactions has been extensively exploited to study gene functions and to dissect pathway structures. One such genetic interaction is synthetic lethality, in which the combination of two non-lethal mutations leads to loss of organism viability. We have developed a dSLAM (heterozygote diploid-based synthetic lethality analysis with microarrays) technology that effectively studies synthetic lethality interactions on a genome-wide scale in the budding yeast Saccharomyces cerevisiae. Typically, a query mutation is introduced en masse into a population of approximately 6000 haploid-convertible heterozygote diploid Yeast Knockout (YKO) mutants via integrative transformation. Haploid pools of single and double mutants are freshly generated from the resultant heterozygote diploid double mutant pool after meiosis and haploid selection and studied for potential growth defects of each double mutant combination by microarray analysis of the "molecular barcodes" representing each YKO. This technology has been effectively adapted to study other types of genome-wide genetic interactions including gene-compound synthetic lethality, secondary mutation suppression, dosage-dependent synthetic lethality and suppression.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Genes Letais , Genoma , Análise em Microsséries/métodos , Saccharomyces cerevisiae/genética , Sequência de Bases , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Dados de Sequência Molecular , Mutação , Oligonucleotídeos/genética
6.
Curr Biol ; 16(13): 1280-9, 2006 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-16815704

RESUMO

BACKGROUND: Acetylation of histone H3 lysine 56 (K56Ac) occurs transiently in newly synthesized H3 during passage through S phase and is removed in G2. However, the physiologic roles and effectors of K56Ac turnover are unknown. RESULTS: The sirtuins Hst3p and, to a lesser extent, Hst4p maintain low levels of K56Ac outside of S phase. In hst3 hst4 mutants, K56 hyperacetylation nears 100%. Residues corresponding to the nicotinamide binding pocket of Sir2p are essential for Hst3p function, and H3 K56 deacetylation is inhibited by nicotinamide in vivo. Rapid inactivation of Hst3/Hst4p prior to S phase elevates K56Ac to 50% in G2, suggesting that K56-acetylated nucleosomes are assembled genome-wide during replication. Inducible expression of Hst3p in G1 or G2 triggers deacetylation of mature chromatin. Cells lacking Hst3/Hst4p exhibit many phenotypes: spontaneous DNA damage, chromosome loss, thermosensitivity, and acute sensitivity to genotoxic agents. These phenotypes are suppressed by mutation of histone H3 K56 into a nonacetylatable residue or by loss of K56Ac in cells lacking the histone chaperone Asf1. CONCLUSIONS: Our results underscore the critical importance of Hst3/Hst4p in controlling histone H3 K56Ac and thereby maintaining chromosome integrity.


Assuntos
Histona Desacetilases/fisiologia , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Acetilação , Sequência de Aminoácidos , Sítios de Ligação , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/fisiologia , Cromatina/metabolismo , Dano ao DNA , Replicação do DNA , Genoma Fúngico , Instabilidade Genômica , Histona Desacetilases/química , Histona Desacetilases/genética , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação , Niacinamida/metabolismo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Sirtuínas/química , Sirtuínas/genética , Sirtuínas/fisiologia
7.
Genes Dev ; 20(8): 966-76, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16598039

RESUMO

Covalent histone post-translational modifications such as acetylation, methylation, phosphorylation, and ubiquitylation play pivotal roles in regulating many cellular processes, including transcription, response to DNA damage, and epigenetic control. Although positive-acting post-translational modifications have been studied in Saccharomyces cerevisiae, histone modifications that are associated with transcriptional repression have not been shown to occur in this yeast. Here, we provide evidence that histone sumoylation negatively regulates transcription in S. cerevisiae. We show that all four core histones are sumoylated and identify specific sites of sumoylation in histones H2A, H2B, and H4. We demonstrate that histone sumoylation sites are involved directly in transcriptional repression. Further, while histone sumoylation occurs at all loci tested throughout the genome, slightly higher levels occur proximal to telomeres. We observe a dynamic interplay between histone sumoylation and either acetylation or ubiquitylation, where sumoylation serves as a potential block to these activating modifications. These results indicate that sumoylation is the first negative histone modification to be identified in S. cerevisiae and further suggest that sumoylation may serve as a general dynamic mark to oppose transcription.


Assuntos
Histonas/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Sequência de Aminoácidos , Western Blotting , Imunoprecipitação , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Telômero , Ubiquitina/metabolismo
8.
Trends Genet ; 22(1): 56-63, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16309778

RESUMO

The Saccharomyces genome-deletion project created >5900 'molecularly barcoded' yeast knockout mutants (YKO mutants). The YKO mutant collections have facilitated large-scale analyses of a multitude of mutant phenotypes. For example, both synthetic genetic array (SGA) and synthetic-lethality analysis by microarray (SLAM) methods have been used for synthetic-lethality screens. Global analysis of synthetic lethality promises to identify cellular pathways that 'buffer' each other biologically. The combination of global synthetic-lethality analysis, together with global protein-protein interaction analyses, mRNA expression profiling and functional profiling will, in principle, enable construction of a cellular 'wiring diagram' that will help frame a deeper understanding of human biology and disease.


Assuntos
Saccharomyces cerevisiae/genética , Mapeamento Cromossômico , Deleção de Genes , Perfilação da Expressão Gênica , Genes Fúngicos , Genes Letais , Técnicas Genéticas , Genoma Fúngico , Análise de Sequência com Séries de Oligonucleotídeos , RNA Fúngico/genética , RNA Mensageiro/genética
9.
J Cell Biol ; 163(4): 729-41, 2003 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-14623866

RESUMO

Pds5p and the cohesin complex are required for sister chromatid cohesion and localize to the same chromosomal loci over the same cell cycle window. However, Pds5p and the cohesin complex likely have distinct roles in cohesion. We report that pds5 mutants establish cohesion, but during mitosis exhibit precocious sister dissociation. Thus, unlike the cohesin complex, which is required for cohesion establishment and maintenance, Pds5p is required only for maintenance. We identified SMT4, which encodes a SUMO isopeptidase, as a high copy suppressor of both the temperature sensitivity and precocious sister dissociation of pds5 mutants. In contrast, SMT4 does not suppress temperature sensitivity of cohesin complex mutants. Pds5p is SUMO conjugated, with sumoylation peaking during mitosis. SMT4 overexpression reduces Pds5p sumoylation, whereas smt4 mutants have increased Pds5p sumoylation. smt4 mutants were previously shown to be defective in cohesion maintenance during mitosis. These data provide the first link between a protein required for cohesion, Pds5p, and sumoylation, and suggest that Pds5p sumoylation promotes the dissolution of cohesion.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/fisiologia , Segregação de Cromossomos/fisiologia , Proteínas Fúngicas/metabolismo , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , Proteínas Cromossômicas não Histona , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Modelos Biológicos , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Temperatura , Leveduras , Coesinas
10.
Mol Cell Biol ; 23(9): 3202-15, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12697820

RESUMO

The accurate segregation of chromosomes requires the kinetochore, a complex protein machine that assembles onto centromeric DNA to mediate attachment of replicated sister chromatids to the mitotic spindle apparatus. This study reveals an important role for the yeast RSC ATP-dependent chromatin-remodeling complex at the kinetochore in chromosome transmission. Mutations in genes encoding two core subunits of RSC, the ATPase Sth1p and the Snf5p homolog Sfh1p, interact genetically with mutations in genes encoding kinetochore proteins and with a mutation in centromeric DNA. RSC also interacts genetically and physically with the histone and histone variant components of centromeric chromatin. Importantly, RSC is localized to centromeric and centromere-proximal chromosomal regions, and its association with these loci is dependent on Sth1p. Both sth1 and sfh1 mutants exhibit altered centromeric and centromere-proximal chromatin structure and increased missegregation of authentic chromosomes. Finally, RSC is not required for centromeric deposition of the histone H3 variant Cse4p, suggesting that RSC plays a role in reconfiguring centromeric and flanking nucleosomes following Cse4p recruitment for proper chromosome transmission.


Assuntos
Cromatina/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA/metabolismo , Cinetocoros/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/química , Centrômero/fisiologia , Cromatina/genética , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA/genética , Histonas/genética , Substâncias Macromoleculares , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transferência de Fosfolipídeos , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático , Fatores de Transcrição/genética
11.
Mol Cell ; 10(4): 843-55, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12419228

RESUMO

During a screen to identify c-Jun activators, we isolated a cysteine protease, SuPr-1, that induced c-Jun-dependent transcription independently of c-Jun phosphorylation. SuPr-1 is a member of a new family of proteases that hydrolyze the ubiquitin-like modifier, SUMO-1. SuPr-1 hydrolyzed SUMO-1-modified forms of the promyelocytic leukemia gene product, PML, and altered the subcellular distribution of PML in nuclear PODs (PML oncogenic domains). SuPr-1 also altered the distribution of other nuclear POD-associated proteins, such as CBP and Daxx, that act as transcriptional regulators. SuPr-1 action on transcription was enhanced by PML, and SuPr-1 failed to activate transcription in PML-deficient fibroblasts. Our studies establish an important role for SUMO proteases in transcription.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares , Fatores de Transcrição/metabolismo , Ativação Transcricional , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Estruturas do Núcleo Celular/metabolismo , Cisteína Endopeptidases/genética , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Proteínas de Neoplasias/genética , Fosforilação , Regiões Promotoras Genéticas , Proteína da Leucemia Promielocítica , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor
12.
Eur J Biochem ; 269(9): 2300-14, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11985612

RESUMO

The centromere-kinetochore complex is a highly specialized chromatin domain that both mediates and monitors chromosome-spindle interactions responsible for accurate partitioning of sister chromatids to daughter cells. Centromeres are distinguished from adjacent chromatin by specific patterns of histone modification and the presence of a centromere-specific histone H3 variant (e.g. CENP-A). Centromere-proximal regions usually correspond to sites of avid and persistent sister chromatid cohesion mediated by the conserved cohesin complex. In budding yeast, there is a substantial body of evidence indicating centromeres direct formation and/or stabilization of centromere-proximal cohesion. In other organisms, the dependency of cohesion on centromere function is not as clear. Indeed, it appears that pericentromeric heterochromatin recruits cohesion proteins independent of centromere function. Nonetheless, aspects of centromere function are impaired in the absence of sister chromatid cohesion, suggesting the two are interdependent. Here we review the nature of centromeric chromatin, the dynamics and regulation of sister chromatid cohesion, and the relationship between the two.


Assuntos
Centrômero/fisiologia , Cromátides/fisiologia , Cinetocoros/fisiologia , Animais , Proteínas Cromossômicas não Histona/fisiologia , Heterocromatina/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...