Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690647

RESUMO

Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.


Assuntos
Nível de Alerta , Plexo Corióideo , Células Ependimogliais , Hibernação , Proteínas Proto-Oncogênicas c-fos , Torpor , Animais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Nível de Alerta/fisiologia , Torpor/fisiologia , Hibernação/fisiologia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Plexo Corióideo/metabolismo , Plexo Corióideo/fisiologia , Mesocricetus , Masculino , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Marrom/metabolismo , Cricetinae
2.
Curr Biol ; 34(3): 632-640.e6, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38218183

RESUMO

In mammals, maternal photoperiodic programming (MPP) provides a means whereby juvenile development can be matched to forthcoming seasonal environmental conditions.1,2,3,4 This phenomenon is driven by in utero effects of maternal melatonin5,6,7 on the production of thyrotropin (TSH) in the fetal pars tuberalis (PT) and consequent TSH receptor-mediated effects on tanycytes lining the 3rd ventricle of the mediobasal hypothalamus (MBH).8,9,10 Here we use LASER capture microdissection and transcriptomic profiling to show that TSH-dependent MPP controls the attributes of the ependymal region of the MBH in juvenile animals. In Siberian hamster pups gestated and raised on a long photoperiod (LP) and thereby committed to a fast trajectory for growth and reproductive maturation, the ependymal region is enriched for tanycytes bearing sensory cilia and receptors implicated in metabolic sensing. Contrastingly, in pups gestated and raised on short photoperiod (SP) and therefore following an over-wintering developmental trajectory with delayed sexual maturation, the ependymal region has fewer sensory tanycytes. Post-weaning transfer of SP-gestated pups to an intermediate photoperiod (IP), which accelerates reproductive maturation, results in a pronounced shift toward a ciliated tanycytic profile and formation of tanycytic processes. We suggest that tanycytic plasticity constitutes a mechanism to tailor metabolic development for extended survival in variable overwintering environments.


Assuntos
Células Ependimogliais , Melatonina , Cricetinae , Animais , Células Ependimogliais/metabolismo , Estações do Ano , Hipotálamo/metabolismo , Ritmo Circadiano , Phodopus/metabolismo , Fotoperíodo , Tireotropina/metabolismo
3.
BMC Vet Res ; 17(1): 14, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413328

RESUMO

BACKGROUND: Hibernation is a physiological and behavioural adaptation that permits survival during periods of reduced food availability and extreme environmental temperatures. This is achieved through cycles of metabolic depression and reduced body temperature (torpor) and rewarming (arousal). Rewarming from torpor is achieved through the activation of brown adipose tissue (BAT) associated with a rapid increase in ventilation frequency. Here, we studied the rate of rewarming in the European hamster (Cricetus cricetus) by measuring both BAT temperature, core body temperature and ventilation frequency. RESULTS: Temperature was monitored in parallel in the BAT (IPTT tags) and peritoneal cavity (iButtons) during hibernation torpor-arousal cycling. We found that increases in brown fat temperature preceded core body temperature rises by approximately 48 min, with a maximum re-warming rate of 20.9℃*h-1. Re-warming was accompanied by a significant increase in ventilation frequency. The rate of rewarming was slowed by the presence of a spontaneous thoracic mass in one of our animals. Core body temperature re-warming was reduced by 6.2℃*h-1 and BAT rewarming by 12℃*h-1. Ventilation frequency was increased by 77% during re-warming in the affected animal compared to a healthy animal. Inspection of the position and size of the mass indicated it was obstructing the lungs and heart. CONCLUSIONS: We have used a minimally invasive method to monitor BAT temperature during arousal from hibernation illustrating BAT re-warming significantly precedes core body temperature re-warming, informing future study design on arousal from hibernation. We also showed compromised re-warming from hibernation in an animal with a mass obstructing the lungs and heart, likely leading to inefficient ventilation and circulation.


Assuntos
Cricetinae/fisiologia , Hibernação/fisiologia , Monitorização Fisiológica/veterinária , Tecido Adiposo Marrom/fisiologia , Animais , Nível de Alerta , Temperatura Corporal , Monitorização Fisiológica/métodos , Cavidade Peritoneal , Taxa Respiratória , Tórax/patologia
4.
J Exp Biol ; 223(Pt 16)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32587064

RESUMO

Organisms use changes in photoperiod to anticipate and exploit favourable conditions in a seasonal environment. While species living at temperate latitudes receive day length information as a year-round input, species living in the Arctic may spend as much as two-thirds of the year without experiencing dawn or dusk. This suggests that specialised mechanisms may be required to maintain seasonal synchrony in polar regions. Svalbard ptarmigan (Lagopus muta hyperborea) are resident at 74-81°N latitude. They spend winter in constant darkness (DD) and summer in constant light (LL); extreme photoperiodic conditions under which they do not display overt circadian rhythms. Here, we explored how Arctic adaptation in circadian biology affects photoperiodic time measurement in captive Svalbard ptarmigan. For this purpose, DD-adapted birds, showing no circadian behaviour, either remained in prolonged DD, were transferred into a simulated natural photoperiod (SNP) or were transferred directly into LL. Birds transferred from DD to LL exhibited a strong photoperiodic response in terms of activation of the hypothalamic thyrotropin-mediated photoperiodic response pathway. This was assayed through expression of the Eya3, Tshß and deiodinase genes, as well as gonadal development. While transfer to SNP established synchronous diurnal activity patterns, activity in birds transferred from DD to LL showed no evidence of circadian rhythmicity. These data show that the Svalbard ptarmigan does not require circadian entrainment to develop a photoperiodic response involving conserved molecular elements found in temperate species. Further studies are required to define how exactly Arctic adaptation modifies seasonal timer mechanisms.


Assuntos
Ritmo Circadiano , Fotoperíodo , Animais , Regiões Árticas , Aves , Estações do Ano , Svalbard
5.
Artigo em Inglês | MEDLINE | ID: mdl-31998235

RESUMO

This mini-review considers the phenomenon of maternal photoperiodic programming (MPP). In order to match neonatal development to environmental conditions at the time of birth, mammals use melatonin produced by the maternal pineal gland as a transplacental signal representing ambient photoperiod. Melatonin acts via receptors in the fetal pituitary gland, exerting actions on the developing medio-basal hypothalamus. Within this structure, a central role for specialized ependymal cells known as tanycytes has emerged, linking melatonin to control of hypothalamic thyroid metabolism and in turn to pup development. This review summarizes current knowledge of this programming mechanism, and its relevance in an eco-evolutionary context. Maternal photoperiodic programming emerges as a useful paradigm for understanding how in utero programing of hypothalamic function leads to life-long effects on growth, reproduction, health and disease in mammals, including humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...