Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 372(6539): 280-283, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33859032

RESUMO

In boreal forests, climate warming is shifting the wildfire disturbance regime to more frequent fires that burn more deeply into organic soils, releasing sequestered carbon to the atmosphere. To understand the destabilization of carbon storage, it is necessary to consider these effects in the context of long-term ecological change. In Alaskan boreal forests, we found that shifts in dominant plant species catalyzed by severe fire compensated for greater combustion of soil carbon over decadal time scales. Severe burning of organic soils shifted tree dominance from slow-growing black spruce to fast-growing deciduous broadleaf trees, resulting in a net increase in carbon storage by a factor of 5 over the disturbance cycle. Reduced fire activity in future deciduous-dominated boreal forests could increase the tenure of this carbon on the landscape, thereby mitigating the feedback to climate warming.

2.
New Phytol ; 227(5): 1335-1349, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32299141

RESUMO

Nitrogen (N2 )-fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N2 -fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N2 -fixation rates of Hylocomium splendens and Pleurozium schreberi. We conducted a moss transplant and leaf litter manipulation experiment at three sites with paired paper birch (Betula neoalaskana) and black spruce (Picea mariana) stands in Alaska. We characterized bacterial communities using marker gene sequencing, determined N2 -fixation rates using stable isotopes (15 N2 ) and measured environmental covariates. Mosses native to and transplanted into spruce stands supported generally higher N2 -fixation and distinct microbial communities compared to similar treatments in birch stands. High leaf litter inputs shifted microbial community composition for both moss species and reduced N2 -fixation rates for H. splendens, which had the highest rates. N2 -fixation was positively associated with several bacterial taxa, including cyanobacteria. The moss microbiome and environmental conditions controlled N2 -fixation at the stand and transplant scales. Predicted shifts from spruce- to deciduous-dominated stands will interact with the relative abundances of mosses supporting different microbiomes and N2 -fixation rates, which could affect stand-level N inputs.


Assuntos
Briófitas , Microbiota , Alaska , Nitrogênio/análise , Fixação de Nitrogênio , Folhas de Planta/química , Árvores
3.
Ecol Appl ; 28(1): 149-161, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28987028

RESUMO

Increasing wildfire activity in Alaska's boreal forests has led to greater fuel-reduction management. Management has been implemented to reduce wildfire spread, but the ecological impacts of these practices are poorly known. We quantified the effects of hand-thinning and shearblading on above- and belowground stand characteristics, plant species composition, carbon (C) and nitrogen (N) pools, and soil thaw across 19 sites dominated by black spruce (Picea mariana) in interior Alaska treated 2-12 years prior to sampling. The density of deciduous tree seedlings was significantly higher in shearbladed areas compared to unmanaged forest (6.4 vs. 0.1 stems/m2 ), and unmanaged stands exhibited the highest mean density of conifer seedlings and layers (1.4 stems/m2 ). Understory plant community composition was most similar between unmanaged and thinned stands. Shearblading resulted in a near complete loss of aboveground tree biomass C pools while thinning approximately halved the C pool size (1.2 kg C/m2 compared to 3.1 kg C/m2 in unmanaged forest). Significantly smaller soil organic layer (SOL) C and N pools were observed in shearbladed stands (3.2 kg C/m2 and 116.8 g N/m2 ) relative to thinned (6.0 kg C/m2 and 192.2 g N/m2 ) and unmanaged (5.9 kg C/m2 and 178.7 g N/m2 ) stands. No difference in C and N pool sizes in the uppermost 10 cm of mineral soil was observed among stand types. Total C stocks for measured pools was 2.6 kg C/m2 smaller in thinned stands and 5.8 kg C/m2 smaller in shearbladed stands when compared to unmanaged forest. Soil thaw depth averaged 13 cm deeper in thinned areas and 46 cm deeper in shearbladed areas relative to adjacent unmanaged stands, although variability was high across sites. Deeper soil thaw was linked to shallower SOL depth for unmanaged stands and both management types, however for any given SOL depth, thaw tended to be deeper in shearbladed areas compared to unmanaged forest. These findings indicate that fuel-reduction management alters plant community composition, C and N pools, and soil thaw depth, with consequences for ecosystem structure and function beyond those intended for fire management.


Assuntos
Agricultura Florestal/métodos , Florestas , Magnoliopsida , Picea , Solo/química , Alaska , Ciclo do Carbono , Ciclo do Nitrogênio
4.
Proc Natl Acad Sci U S A ; 114(2): E122-E131, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028223

RESUMO

Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80-100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.

5.
Environ Sci Technol ; 50(13): 6873-81, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27227378

RESUMO

The United States (U.S.) Environmental Protection Agency (EPA) has established voluntary programs to reduce methane (CH4) emissions, and regulations that either directly reduce CH4 or provide co-benefits of reducing CH4 emissions while controlling for other air pollutants. These programs and regulations address four sectors that are among the largest domestic CH4 emissions sources: municipal solid waste landfills, oil and natural gas, coal mining, and agricultural manure management. Over the 1993-2013 time period, 127.9 Tg of CH4 emissions reductions were attributed to these programs, equal to about 18% of the counterfactual (or potential) domestic emissions over that time, with almost 70% of the abatement due to landfill sector regulations. Reductions attributed to the voluntary programs increased nearly continuously during the study period. We quantified how these reductions influenced atmospheric CH4 concentration and global temperature, finding a decrease in concentration of 28 ppb and an avoided temperature rise of 0.006 °C by 2013. Further, we monetized the climate and ozone-health impacts of the CH4 reductions, yielding an estimated benefit of $255 billion. These results indicate that EPA programs and policies have made a strong contribution to CH4 abatement, with climate and air quality benefits.


Assuntos
Metano , United States Environmental Protection Agency , Poluentes Atmosféricos , Clima , Estados Unidos , Instalações de Eliminação de Resíduos
6.
Ecol Appl ; 23(8): 1962-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24555321

RESUMO

In acid-impacted forests, decreased soil pH and calcium (Ca) availability have the potential to influence biotic and abiotic controls on carbon (C) and nitrogen (N) cycling. We investigated the effects of liming on above- and belowground C and N pools and fluxes 19 years after lime addition to the Woods Lake Watershed, Adirondack Park, New York, USA. Soil pH and exchangeable Ca remained elevated in the forest floor and upper mineral soil of limed areas. Forest floor C and N stocks were significantly larger in limed plots (68 vs. 31 Mg C/ha, and 3.0 vs. 1.5 Mg N/ha), resulting from a larger mass of Oa material. Liming reduced soil basal respiration rates by 17% and 43% in the Oe and Oa horizons, respectively. Net N mineralization was significantly lower in the limed soils for both forest floor horizons. Additional measurements of forest floor depth outside of our study plots, but within the treatment and control subcatchments also showed a deeper forest floor in limed areas; however, the mean depth of limed forest floor was 5 cm shallower than that observed in our study plots. Using a differential equation model of forest floor C dynamics, we found that liming effects on C fluxes measured within our study plots could explain the small observed increase in the Oe C stock but were not large enough to explain the increase in the Oa. Our catchment-wide assessment of forest floor depth, however, indicates that our plot analysis may be an overestimate of ecosystem-scale C and N stocks. Our results suggest that the mechanisms identified in our study, primarily liming-induced reduction in decomposition rates, may account for much of the observed increase in forest floor C. These findings emphasize the importance of understanding of the effects of liming in hardwood forests, and the long-term impacts of acid deposition on forest C and N uptake and retention.


Assuntos
Compostos de Cálcio/química , Carbono/química , Nitrogênio/química , Óxidos/química , Árvores , Conservação dos Recursos Naturais , Ecossistema , Concentração de Íons de Hidrogênio , Modelos Biológicos , New York , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...