Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864724

RESUMO

Aiming at the problem that the rolling bearing fault data are difficult to obtain and that the traditional fault diagnosis method does not consider the signal uncertainty characteristics and the low accuracy of models in the process of rolling bearing fault, a fault diagnosis method based on simulation and experiment fusion drive is proposed. First, the dynamics simulation model of rolling bearings under different fault conditions is established to obtain the bearing fault simulation signals. Second, a sequence generative adversarial network is used to fuse the simulation and experimental data. Bearing vibration signals are often very uncertain, so considering the probability characteristics of fault signals, the probability box model under different fault states is constructed by the direct probability box modeling method, and its characteristic vectors are extracted. Finally, an extreme gradient boosting Tree model for fault diagnosis classification is constructed to compare and evaluate the classification and diagnosis effects of bearing states before and after data fusion. The results show that the proposed method has a good diagnostic effect and is suitable for solving the fault diagnosis problem under the condition of insufficient data.

2.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557887

RESUMO

Ensuring the safe operation of trains hinges on precise bearing condition monitoring, given the pivotal role bearings play in railway wagons. The status and maintenance of wagon bearings are of paramount concern, necessitating a shift from traditional maintenance approaches reliant on schedules and experience, which often lack real-time precision and efficiency. To address this challenge, our research focuses on enhancing the sparrow search algorithm by incorporating logistic chaos mapping and the levy flight strategy. This enhanced algorithm optimizes variational mode decomposition parameters, utilizing intrinsic mode components' average dispersion entropy as the fitness function. This optimization is integrated with a multi-level convolutional neural network for bearing fault diagnosis. Our findings demonstrate the improved algorithm's enhanced spatial search capabilities and reduced modal aliasing in the frequency components. Experimental validation on public datasets and the group's experimental platform for railway wagons shows that multi-level convolutional neural networks have higher diagnostic accuracy and faster convergence speeds than traditional models such as LeNet-5, AlexNet, and convolutional neural network. Our research introduces a highly accurate and widely applicable methodology for mechanical equipment fault diagnosis, aligning with the requirements of the "smart" era.

3.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938070

RESUMO

To address the challenge of low fault diagnosis accuracy due to insufficient bearing fault data collected by single-sensor, a rolling bearing fault diagnosis method based on multi-sensor bi-layer information fusion under small samples is proposed. In the first-layer feature fusion, first, aiming at the problem that the number of intrinsic mode functions (IMFs) and the penalty factor in the variational mode decomposition (VMD) is challenging to determine, the Aquila optimizer algorithm is introduced to search for the optimal solution independently. Decomposition of bearing vibration signals acquired by multiple sensors using a parameter optimized the VMD method to obtain IMFs. The 12 time-domain features are then extracted for each IMF, and the maximum information coefficient (MIC) between each IMF time-domain feature and raw signal time-domain features is calculated. Finally, the feature fusion composition ratio is calculated according to the MIC mean of each. In the second layer of data fusion, the fusion composition ratio calculated in the first layer is used as a weight-to-weight and reconstructs the signals of each sensor to constitute a fused signal. Then, the fused signals are input into the fault diagnostic model, and fault pattern recognition and fault severity recognition are performed at the same time. The results show that the accuracy of the method proposed in this paper is higher than that of the comparison method on both the public dataset and the self-built experimental bench dataset, and it is an accurate, stable, and efficient fault diagnosis method.

4.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37504502

RESUMO

To enhance the precision of rolling bearing fault diagnosis, an intelligent hybrid approach is proposed in this paper for signal processing and fault diagnosis in small samples. This approach is based on advanced techniques, combining parameter optimization variational mode decomposition weighted by multiscale permutation entropy (MPE) with maximal information coefficient and multi-target attention convolutional neural networks (MTACNN). First, an improved variational mode decomposition (VMD) is developed to denoise the raw signal. The whale optimization algorithm was used to optimize the penalty factor and mode component number in the VMD algorithm to obtain several intrinsic mode functions (IMFs). Second, separate MPE calculations are performed for both the raw signal and each of the IMF components obtained from the VMD decomposition; the results are used to calculate the maximum information coefficient (MIC). Subsequently, each MIC is normalized and converted to a weight coefficient for signal reconstruction. Ultimately, the reconstructed signals serve as input to the MTACNN for diagnosing rolling bearing faults. Results demonstrate that the signal processing approach exhibits superior noise reduction capability through simple processing. Furthermore, compared to several similar approaches, The method proposed for fault diagnosis achieves superior performance levels in the fault pattern recognition target and the fault severity recognition target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...