Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8010): 127-135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658750

RESUMO

Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio , Locomoção , Marsupiais , Fatores de Transcrição , Animais , Feminino , Masculino , Camundongos , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Genômica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Locomoção/genética , Marsupiais/anatomia & histologia , Marsupiais/classificação , Marsupiais/genética , Marsupiais/crescimento & desenvolvimento , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fenótipo , Humanos
2.
Int J Parasitol Parasites Wildl ; 22: 249-254, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059179

RESUMO

Fatal hepatic sarcocystosis was diagnosed as the cause of death in four pinnipeds: two captive Hawaiian monk seals (Monachus schauinslandi), a captive, and a free-ranging California sea lion (Zalophus californianus). Based on necropsy, histopathology, electron microscopy and DNA sequencing, intralesional protozoal schizonts were determined to have caused the necrotizing hepatitis observed. Transmission Electron Microscopy (TEM) revealed schizonts similar to Sarcocystis canis in hepatocytes. PCR-DNA sequencing and phylogenetic analysis at the conserved 18S rRNA and variable ITS1 gene markers within the nuclear rRNA gene array from schizont-laden tissue established that the parasites were indistinguishable from Sarcocystis canis at the 18S rRNA locus. However, six distinct single nucleotide polymorphisms (SNPs) were resolved at ITS1 suggesting that the parasites infecting pinnipeds were distinct from S. canis, which commonly infects bears and dogs. We hypothesize that the parasite represents a novel Sarcocystis variant that we refer to as S. canis-like that infects pinnipeds. The definitive host of S. canis is enigmatic and its life cycle incomplete. These findings document a critical need to identify the life cycle(s), definitive host(s), and all susceptible marine and terrestrial intermediate hosts of S. canis and the S. canis-like variant infecting pinnipeds.

3.
Emerg Infect Dis ; 29(12): 2561-2563, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37987589

RESUMO

We diagnosed fatal Erysipelothrix rhusiopathiae sepsis in 3 stranded bottlenose dolphins (Tursiops truncatus) during summer 2022, in San Diego, California, USA. The previously undetected disease in this relatively small, regional population of dolphins most likely indicates an environmental or biological change in the coastal ocean or organisms.


Assuntos
Golfinho Nariz-de-Garrafa , Erisipela , Erysipelothrix , Sepse , Animais , California/epidemiologia
4.
Science ; 372(6545): 984-989, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34045355

RESUMO

We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Evolução Biológica , Cromossomos/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Eucariotos/genética , Genoma , Complexos Multiproteicos/genética , Complexos Multiproteicos/fisiologia , Adenosina Trifosfatases/química , Algoritmos , Animais , Nucléolo Celular/ultraestrutura , Núcleo Celular/ultraestrutura , Centrômero/ultraestrutura , Cromossomos/química , Cromossomos Humanos/química , Cromossomos Humanos/ultraestrutura , Proteínas de Ligação a DNA/química , Genoma Humano , Genômica , Heterocromatina/ultraestrutura , Humanos , Interfase , Mitose , Modelos Biológicos , Complexos Multiproteicos/química , Telômero/ultraestrutura
5.
Vet Pathol ; 57(2): 316-320, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32079507

RESUMO

Over a 3-year-period, 17 wild-caught opaleye (Girella nigricans) housed in a public display aquarium were found dead without premonitory signs. Grossly, 4 animals had pinpoint brown or black foci on coelomic adipose tissue. Histologically, liver, spleen, heart, and posterior kidney had mesomycetozoan granulomas in all cases; other organs were less commonly infected. Four opaleye had goiter; additional substantial lesions were not identified. Granulomas surrounded melanized debris, leukocytes, and mesomycetozoa represented by folded membranes (collapsed schizont walls), intact schizonts (50- to >200 µm in diameter with a multilaminate membrane), plasmodia (budding from schizonts or free in tissue), or rarely germinal tubes (budding from schizonts). Ichthyophonus was grown from fresh tissues in tissue explant broth cultures of the heart, liver, and/or spleen. Polymerase chain reaction using 18S ribosomal DNA primers amplified a 1730-bp region, and the DNA sequence was most similar to Ichthyophonus hoferi, which is often associated with freshwater aquaculture fish.


Assuntos
Doenças dos Peixes/parasitologia , Mesomycetozoea/isolamento & purificação , Perciformes/parasitologia , Animais , Primers do DNA/genética , Feminino , Doenças dos Peixes/patologia , Coração/parasitologia , Rim/parasitologia , Rim/patologia , Fígado/parasitologia , Fígado/patologia , Masculino , Mesomycetozoea/genética , Miocárdio , Filogenia , Reação em Cadeia da Polimerase/veterinária , Baço/parasitologia , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...