Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38915664

RESUMO

Throughout an organism's life, a multitude of biological systems transition through complex biophysical processes. These processes serve as indicators of the underlying biological states. Inferring these latent unobserved states is a key problem in modern biology and neuroscience. Unfortunately, in many experimental setups we can at best obtain snapshots of the system at different times for different individuals, and one major challenge is the one of reconciling those measurements. This formalism is particularly relevant in the study of Alzheimer's Disease (AD) progression, in which we observe in brain donors the aggregation of pathological proteins but the underlying disease state is unknown. The progression of AD can be modeled by assigning a latent score - termed pseudotime - to each pathological state, creating a pseudotemporal ordering of donors based on their pathological burden. This paper proposes a hierarchical Bayesian framework to model AD progression using detailed quantification of multiple AD pathological proteins from the Seattle AD Brain Cell Atlas consortium (SEA-AD). Inspired by biophysical models, we model pathological burden as an exponential process. Theoretical properties of the model are studied, by using linearization to reveal convergence and identifiability properties. We provide Markov chain Monte Carlo estimation algorithms, and show the effectiveness of our approach with multiple simulation studies across data conditions. Applying the methodology to SEA-AD brain data, we infer pseudotime for each donor and order them by pathological burden. Finally, we analyze the information within each pathological feature and utilize it to refine the model by focusing on the most informative pathologies. This lays the groundwork for suggesting future experimental design approaches.

2.
Sci Adv ; 9(31): eadh9920, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531439

RESUMO

SARS-CoV-2 vaccines have been distributed at unprecedented speed. Still, little is known about temporal vaccination trends, their association with socioeconomic inequality, and their consequences for disease control. Using data from 161 countries/territories and 58 states, we examined vaccination rates across high and low socioeconomic status (SES), showing that disparities in coverage exist at national and subnational levels. We also identified two distinct vaccination trends: a rapid initial rollout, quickly reaching a plateau, or sigmoidal and slow to begin. Informed by these patterns, we implemented an SES-stratified mechanistic model, finding profound differences in mortality and incidence across these two vaccination types. Timing of initial rollout affects disease outcomes more substantially than final coverage or degree of SES disparity. Unexpectedly, timing is not associated with wealth inequality or GDP per capita. While socioeconomic disparity should be addressed, accelerating initial rollout for all over focusing on increasing coverage is an accessible intervention that could minimize the burden of disease across socioeconomic groups.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação , Disparidades Socioeconômicas em Saúde
3.
Science ; 372(6545)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33906968

RESUMO

The COVID-19 pandemic has affected cities particularly hard. Here, we provide an in-depth characterization of disease incidence and mortality and their dependence on demographic and socioeconomic strata in Santiago, a highly segregated city and the capital of Chile. Our analyses show a strong association between socioeconomic status and both COVID-19 outcomes and public health capacity. People living in municipalities with low socioeconomic status did not reduce their mobility during lockdowns as much as those in more affluent municipalities. Testing volumes may have been insufficient early in the pandemic in those places, and both test positivity rates and testing delays were much higher. We find a strong association between socioeconomic status and mortality, measured by either COVID-19-attributed deaths or excess deaths. Finally, we show that infection fatality rates in young people are higher in low-income municipalities. Together, these results highlight the critical consequences of socioeconomic inequalities on health outcomes.


Assuntos
COVID-19/epidemiologia , COVID-19/mortalidade , Classe Social , Fatores Socioeconômicos , Adulto , Fatores Etários , Idoso , COVID-19/diagnóstico , COVID-19/transmissão , Teste de Ácido Nucleico para COVID-19 , Chile/epidemiologia , Cidades/epidemiologia , Humanos , Incidência , Pessoa de Meia-Idade , Mortalidade , Distanciamento Físico , Pobreza , Saúde da População Urbana
4.
Cell ; 184(1): 272-288.e11, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33378642

RESUMO

Comprehensively resolving neuronal identities in whole-brain images is a major challenge. We achieve this in C. elegans by engineering a multicolor transgene called NeuroPAL (a neuronal polychromatic atlas of landmarks). NeuroPAL worms share a stereotypical multicolor fluorescence map for the entire hermaphrodite nervous system that resolves all neuronal identities. Neurons labeled with NeuroPAL do not exhibit fluorescence in the green, cyan, or yellow emission channels, allowing the transgene to be used with numerous reporters of gene expression or neuronal dynamics. We showcase three applications that leverage NeuroPAL for nervous-system-wide neuronal identification. First, we determine the brainwide expression patterns of all metabotropic receptors for acetylcholine, GABA, and glutamate, completing a map of this communication network. Second, we uncover changes in cell fate caused by transcription factor mutations. Third, we record brainwide activity in response to attractive and repulsive chemosensory cues, characterizing multimodal coding for these stimuli.


Assuntos
Atlas como Assunto , Mapeamento Encefálico , Encéfalo/fisiologia , Caenorhabditis elegans/fisiologia , Neurônios/fisiologia , Software , Algoritmos , Pontos de Referência Anatômicos , Animais , Corpo Celular/fisiologia , Linhagem da Célula , Drosophila/fisiologia , Mutação/genética , Rede Nervosa/fisiologia , Fenótipo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Neurotransmissores/metabolismo , Olfato/fisiologia , Paladar/fisiologia , Fatores de Transcrição/metabolismo , Transgenes
5.
PLoS Comput Biol ; 13(11): e1005842, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29131818

RESUMO

Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible.


Assuntos
Potenciais de Ação/fisiologia , Artefatos , Estimulação Elétrica/métodos , Neurônios Retinianos/fisiologia , Algoritmos , Animais , Estimulação Elétrica/instrumentação , Eletrodos , Humanos , Modelos Estatísticos , Primatas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...