Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 130, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622246

RESUMO

BACKGROUND: Toxoplasma gondii is a globally distributed protozoan parasite that establishes life-long asymptomatic infection in humans, often emerging as a life-threatening opportunistic pathogen during immunodeficiency. As an intracellular microbe, Toxoplasma establishes an intimate relationship with its host cell from the outset of infection. Macrophages are targets of infection and they are important in early innate immunity and possibly parasite dissemination throughout the host. Here, we employ an RNA-sequencing approach to identify host and parasite transcriptional responses during infection of mouse bone marrow-derived macrophages (BMDM). We incorporated into our analysis infection with the high virulence Type I RH strain and the low virulence Type II strain PTG. Because the well-known TLR-MyD88 signaling axis is likely of less importance in humans, we examined transcriptional responses in both MyD88+/+ and MyD88-/- BMDM. Long noncoding (lnc) RNA molecules are emerging as key regulators in infection and immunity, and were, therefore, included in our analysis. RESULTS: We found significantly more host genes were differentially expressed in response to the highly virulent RH strain rather than with the less virulent PTG strain (335 versus 74 protein coding genes for RH and PTG, respectively). Enriched in these protein coding genes were subsets associated with the immune response as well as cell adhesion and migration. We identified 249 and 83 non-coding RNAs as differentially expressed during infection with RH and PTG strains, respectively. Although the majority of these are of unknown function, one conserved lncRNA termed mir17hg encodes the mir17 microRNA gene cluster that has been implicated in down-regulating host cell apoptosis during T. gondii infection. Only a minimal number of transcripts were differentially expressed between MyD88 knockout and wild type cells. However, several immune genes were among the differences. While transcripts for parasite secretory proteins were amongst the most highly expressed T. gondii genes during infection, no differentially expressed parasite genes were identified when comparing infection in MyD88 knockout and wild type host BMDM. CONCLUSIONS: The large dataset presented here lays the groundwork for continued studies on both the MyD88-independent immune response and the function of lncRNAs during Toxoplasma gondii infection.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Humanos , Macrófagos , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Toxoplasma/genética , Toxoplasmose/genética , Transcriptoma
2.
Artigo em Inglês | MEDLINE | ID: mdl-31157172

RESUMO

As an intracellular microbe, Toxoplasma gondii must establish a highly intimate relationship with its host to ensure success as a parasite. Many studies over the last decade-and-a-half have highlighted how the host reshapes its immunoproteome to survive infection, and conversely how the parasite regulates host responses to ensure persistence. The role of host non-protein-coding RNA during infection is a vast and largely unexplored area of emerging interest. The potential importance of this facet of the host-parasite interaction is underscored by current estimates that as much as 80% of the host genome is transcribed into non-translated RNA. Here, we review the current state of knowledge with respect to two major classes of non-coding RNA, microRNA (miRNA) and long non-coding RNA (lncRNA), in the host response to T. gondii infection. These two classes of regulatory RNA are known to have profound and widespread effects on cell function. However, their impact on infection and immunity is not well-understood, particularly for the response to T. gondii. Nevertheless, numerous miRNAs have been identified that are upregulated by Toxoplasma, and emerging evidence suggests a functional role during infection. While the field of lncRNA is in its infancy, it is already clear that Toxoplasma is also a strong trigger for this class of regulatory RNA. Non-coding RNA responses induced by T. gondii are likely to be major determinants of the host's ability to resist infection and the parasite's ability to establish long-term latency.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , RNA não Traduzido/biossíntese , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/patologia , Humanos
3.
Sci Rep ; 8(1): 15017, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301916

RESUMO

Long noncoding RNA (lncRNA) are non-protein-coding transcripts greater than 200 nucleotides that regulate gene expression. The field of transcriptomics is only beginning to understand the role of lncRNA in host defense. Little is known about the role of lncRNA in the response to infection by intracellular pathogens such as Toxoplasma gondii. Using a microarray, we examined the differential expression of 35,923 lncRNAs and 24,881 mRNAs in mouse bone-marrow-derived macrophages during infection with high- and low-virulence T. gondii strains. We found that 1,522 lncRNA molecules were differentially regulated during infection with the high-virulence Type I strain, versus 528 with the less-virulent Type II strain. Of these lncRNAs, 282 were co-regulated with a nearby or overlapping mRNA-including approximately 60 mRNAs with immune-related functions. We validated the microarray for 4 lncRNAs and 4 mRNAs using qRT-PCR. Using deletion strains of T. gondii, we found that the secretory kinase ROP16 controls upregulation of lncRNAs Csf1-lnc and Socs2-lnc, demonstrating that the parasite directly manipulates host lncRNA expression. Given the number of regulated lncRNAs and the magnitude of the expression changes, we hypothesize that these molecules constitute both an additional regulatory layer in the host response to infection and a target for manipulation by T. gondii.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , RNA Longo não Codificante/genética , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/parasitologia , Animais , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Genômica/métodos , Camundongos , Proteínas Tirosina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Interferência de RNA , RNA Mensageiro/genética
4.
PLoS Genet ; 9(7): e1003623, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874222

RESUMO

Integrative and conjugative elements (ICEs) are widespread mobile genetic elements that are usually found integrated in bacterial chromosomes. They are important agents of evolution and contribute to the acquisition of new traits, including antibiotic resistances. ICEs can excise from the chromosome and transfer to recipients by conjugation. Many ICEs are site-specific in that they integrate preferentially into a primary attachment site in the bacterial genome. Site-specific ICEs can also integrate into secondary locations, particularly if the primary site is absent. However, little is known about the consequences of integration of ICEs into alternative attachment sites or what drives the apparent maintenance and prevalence of the many ICEs that use a single attachment site. Using ICEBs1, a site-specific ICE from Bacillus subtilis that integrates into a tRNA gene, we found that integration into secondary sites was detrimental to both ICEBs1 and the host cell. Excision of ICEBs1 from secondary sites was impaired either partially or completely, limiting the spread of ICEBs1. Furthermore, induction of ICEBs1 gene expression caused a substantial drop in proliferation and cell viability within three hours. This drop was dependent on rolling circle replication of ICEBs1 that was unable to excise from the chromosome. Together, these detrimental effects provide selective pressure against the survival and dissemination of ICEs that have integrated into alternative sites and may explain the maintenance of site-specific integration for many ICEs.


Assuntos
Bacillus subtilis/genética , Cromossomos Bacterianos , Resistência Microbiana a Medicamentos/genética , Sequências Repetitivas Dispersas/genética , Replicação do DNA/genética , Transferência Genética Horizontal , Genoma Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...