Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 193(8): 583-94, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21479530

RESUMO

In the Tat protein export pathway of Gram-negative bacteria, TatA and TatB are homologous proteins that carry out distinct and essential functions in separate sub-complexes. In contrast, Gram-positive Tat systems usually lack TatB and the TatA protein is bifunctional. We have used a mutagenesis approach to delineate TatA/B-type domains in the bifunctional TatAd protein from Bacillus subtilis. This involved expression of mutated TatAd variants in Escherichia coli and tests to determine whether the variants could function as TatA or TatB by complementing E. coli tatA and/or tatB mutants. We show that mutations in the C-terminal half of the transmembrane span and the subsequent FGP 'hinge' motif are critical for TatAd function with its partner TatCd subunit, and the same determinants are required for complementation of either tatA or tatB mutants in Escherichia coli. This is thus a critical domain in both TatA and TatB proteins. In contrast, substitution of a series of residues at the N-terminus specifically blocks the ability of TatAd to substitute for E. coli TatB. The results point to the presence of a universally conserved domain in the TatA/B-family, together with a separate N-terminal domain that is linked to the TatB-type function in Gram-negative bacteria.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Alinhamento de Sequência
2.
Biochim Biophys Acta ; 1808(3): 876-84, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21126506

RESUMO

The twin-arginine translocation (Tat) system operates in plant thylakoid membranes and the plasma membranes of most free-living bacteria. In bacteria, it is responsible for the export of a number of proteins to the periplasm, outer membrane or growth medium, selecting substrates by virtue of cleavable N-terminal signal peptides that contain a key twin-arginine motif together with other determinants. Its most notable attribute is its ability to transport large folded proteins (even oligomeric proteins) across the tightly sealed plasma membrane. In Gram-negative bacteria, TatABC subunits appear to carry out all of the essential translocation functions in the form of two distinct complexes at steady state: a TatABC substrate-binding complex and separate TatA complex. Several studies favour a model in which these complexes transiently coalesce to generate the full translocase. Most Gram-positive organisms possess an even simpler "minimalist" Tat system which lacks a TatB component and contains, instead, a bifunctional TatA component. These Tat systems may involve the operation of a TatAC complex together with a separate TatA complex, although a radically different model for TatAC-type systems has also been proposed. While bacterial Tat systems appear to require the presence of only a few proteins for the actual translocation event, there is increasing evidence for the operation of ancillary components that carry out sophisticated "proofreading" activities. These activities ensure that redox proteins are only exported after full assembly of the cofactor, thereby avoiding the futile export of apo-forms. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.


Assuntos
Arginina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Transporte Proteico , Homologia de Sequência de Aminoácidos
3.
FEBS J ; 276(1): 232-43, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19049517

RESUMO

The twin arginine translocation (Tat) system transports folded proteins across the bacterial plasma membrane. In Gram-negative bacteria, membrane-bound TatABC subunits are all essential for activity, whereas Gram-positive bacteria usually contain only TatAC subunits. In Bacillus subtilis, two TatAC-type systems, TatAdCd and TatAyCy, operate in parallel with different substrate specificities. Here, we show that they recognize similar signal peptide determinants. Both systems translocate green fluorescent protein fused to three distinct Escherichia coli Tat signal peptides, namely DmsA, AmiA and MdoD, and mutagenesis of the DmsA signal peptide confirmed that both Tat pathways recognize similar targeting determinants within Tat signals. Although another E. coli Tat substrate, trimethylamine N-oxide reductase, was translocated by TatAdCd but not by TatAyCy, we conclude that these systems are not predisposed to recognize only specific Tat signal peptides, as suggested by their narrow substrate specificities in B. subtilis. We also analysed complexes involved in the second Tat pathway in B. subtilis, TatAyCy. This revealed a discrete TatAyCy complex together with a separate, homogeneous, approximately 200 kDa TatAy complex. The latter complex differs significantly from the corresponding E. coli TatA complexes, pointing to major structural differences between Tat complexes from Gram-negative and Gram-positive organisms. Like TatAd, TatAy is also detectable in the form of massive cytosolic complexes.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Produtos do Gene tat/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Bactérias Gram-Negativas/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Transporte Proteico , Especificidade por Substrato
4.
J Mol Biol ; 375(3): 661-72, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18036542

RESUMO

The Tat system transports folded proteins across bacterial and thylakoid membranes. In Gram-negative organisms, it is encoded by tatABC genes and the system recognizes substrates bearing signal peptides with a conserved twin-arginine motif. Most Gram-positive organisms lack a tatB gene, indicating major differences in organisation and/or mechanism. Here, we have characterized the essential targeting determinants that are recognized by a Bacillus subtilis TatAC-type system, TatAdCd. Substitution by lysine of either of the twin-arginine residues in the TorA signal peptide can be tolerated, but the presence of twin-lysine residues blocks export completely. We show that additional determinants can be as important as the twin-arginine motif. Replacement of the -1 serine by alanine, in either the TorA or DmsA signal peptide, almost blocks export by either the B. subtilis TatAdCd or Escherichia coli TatABC systems, firmly establishing the importance of this -1 residue in these signal peptides. Surprisingly, the +2 leucine in the DmsA signal peptide (sequence SRRGLV) appears to play an equally important role and substitution by alanine or phenylalanine blocks export by both the B. subtilis and E. coli systems. These data identify three distinct determinants, whose importance varies depending on the signal peptide in question. The data also show that the B. subtilis TatAdCd and E. coli TatABC systems recognize very similar determinants within their target peptides, and exhibit surprisingly similar responses to mutations within these determinants.


Assuntos
Arginina/genética , Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos , Sinais Direcionadores de Proteínas/genética , Alanina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Consenso , Proteínas de Fluorescência Verde/metabolismo , Lisina/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Fenilalanina/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Serina/metabolismo , Especificidade da Espécie , Especificidade por Substrato
5.
Microbiology (Reading) ; 152(Pt 10): 2959-2967, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17005977

RESUMO

The molecular target for the bacteriolytic E protein from bacteriophage X174, responsible for host cell lysis, is known to be the enzyme phospho-MurNAc-pentapeptide translocase (MraY), an integral membrane protein involved in bacterial cell wall peptidoglycan biosynthesis, with an essential role being played by peptidyl-prolyl isomerase SlyD. A synthetic 37 aa peptide E(pep), containing the N-terminal transmembrane alpha-helix of E, was found to be bacteriolytic against Bacillus licheniformis, and inhibited membrane-bound MraY. The solution conformation of E(pep) was found by circular dichroism (CD) spectroscopy to be 100 % alpha-helical. No change in the CD spectrum was observed upon addition of purified Escherichia coli SlyD, implying that SlyD does not catalyse prolyl isomerization upon E. However, E(pep) was found to be a potent inhibitor of SlyD-catalysed peptidyl-prolyl isomerization (IC(50) 0.15 microM), implying a strong interaction between E and SlyD. E(pep) was found to inhibit E. coli MraY activity when assayed in membranes (IC(50) 0.8 microM); however, no inhibition of solubilized MraY was observed, unlike nucleoside natural product inhibitor tunicamycin. These results imply that the interaction of E with MraY is not at the MraY active site, and suggest that a protein-protein interaction is formed between E and MraY at a site within the transmembrane region.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptidilprolil Isomerase/metabolismo , Mapeamento de Interação de Proteínas , Transferases/metabolismo , Proteínas Virais/metabolismo , Antibacterianos/farmacologia , Bacillus/efeitos dos fármacos , Proteínas de Bactérias/química , Bacteriólise , Dicroísmo Circular , Proteínas de Escherichia coli/antagonistas & inibidores , Modelos Biológicos , Peptídeos/farmacologia , Peptidilprolil Isomerase/antagonistas & inibidores , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transferases/química , Transferases (Outros Grupos de Fosfato Substituídos) , Proteínas Virais/química
6.
J Mol Biol ; 357(3): 951-63, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16458324

RESUMO

The enzyme acetohydroxyacid synthase (AHAS) catalyses the first common step in the biosynthesis of the three branched-chain amino acids. Enzymes in the AHAS family generally consist of regulatory and catalytic subunits. Here, we describe the first crystal structure of an AHAS regulatory subunit, the ilvH polypeptide, determined at a resolution of 1.75 A. IlvH is the regulatory subunit of one of three AHAS isozymes expressed in Escherichia coli, AHAS III. The protein is a dimer, with two beta alpha beta beta alpha beta ferredoxin domains in each monomer. The two N-terminal domains assemble to form an ACT domain structure remarkably close to the one predicted by us on the basis of the regulatory domain of 3-phosphoglycerate dehydrogenase (3PGDH). The two C-terminal domains combine so that their beta-sheets are roughly positioned back-to-back and perpendicular to the extended beta-sheet of the N-terminal ACT domain. On the basis of the properties of mutants and a comparison with 3PGDH, the effector (valine) binding sites can be located tentatively in two symmetrically related positions in the interface between a pair of N-terminal domains. The properties of mutants of the ilvH polypeptide outside the putative effector-binding site provide further insight into the functioning of the holoenzyme. The results of this study open avenues for further studies aimed at understanding the mechanism of regulation of AHAS by small-molecule effectors.


Assuntos
Acetolactato Sintase/química , Proteínas de Escherichia coli/química , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sítios de Ligação/genética , Cristalografia por Raios X , Dimerização , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Polietilenoglicóis/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Valina/metabolismo
8.
Biochemistry ; 43(42): 13390-6, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15491145

RESUMO

The extradiol catechol dioxygenases catalyze the non-heme iron(II)-dependent oxidative cleavage of catechols to 2-hydroxymuconaldehyde products. Previous studies of a biomimetic model reaction for extradiol cleavage have highlighted the importance of acid-base catalysis for this reaction. Two conserved histidine residues were identified in the active site of the class III extradiol dioxygenases, positioned within 4-5 A of the iron(II) cofactor. His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) were replaced by glutamine, alanine, and tyrosine. Each mutant enzyme was catalytically inactive for extradiol cleavage, indicating the essential nature of these acid-base residues. Replacement of neighboring residues Asp-114 and Pro-181 gave D114N, P181A, and P181H mutant enzymes with reduced catalytic activity and altered pH/rate profiles, indicating the role of His-179 as a base and His-115 as an acid. Mutant H179Q was catalytically active for the lactone hydrolysis half-reaction, whereas mutant H115Q was inactive, implying a role for His-115 in lactone hydrolysis. A catalytic mechanism involving His-179 and His-115 as acid-base catalytic residues is proposed.


Assuntos
Dioxigenases/química , Proteínas de Escherichia coli/química , Histidina/genética , Mutagênese Sítio-Dirigida , Oxigenases/química , Sítios de Ligação/genética , Catálise , Catecol 1,2-Dioxigenase , Dioxigenases/genética , Dioxigenases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Lactonas/química , Lactonas/metabolismo , Oxigenases/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
9.
J Mol Biol ; 325(2): 275-84, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12488095

RESUMO

We have previously proposed a model for the fold of the N-terminal domain of the small, regulatory subunit (SSU) of acetohydroxyacid synthase isozyme III. The fold is an alpha-beta sandwich with betaalphabetabetaalphabeta topology, structurally homologous to the C-terminal regulatory domain of 3-phosphoglycerate dehydrogenase. We suggested that the N-terminal domains of a pair of SSUs interact in the holoenzyme to form two binding sites for the feedback inhibitor valine in the interface between them. The model was supported by mutational analysis and other evidence. We have now examined the role of the C-terminal portion of the SSU by construction of truncated polypeptides (lacking 35, 48, 80, 95, or 112 amino acid residues from the C terminus) and examining the properties of holoenzymes reconstituted using these constructs. The Delta35, Delta48, and Delta80 constructs all lead to essentially complete activation of the catalytic subunits. The Delta80 construct, corresponding to the putative N-terminal domain, has the highest level of affinity for the catalytic subunits and leads to a reconstituted enzyme with k(cat)/K(M) about twice that of the wild-type enzyme. On the other hand, none of these constructs binds valine or leads to a valine-sensitive enzyme on reconstitution. The enzyme reconstituted with the Delta80 construct does not bind valine, either. The N-terminal portion (about 80 amino acid residues) of the SSU is thus necessary and sufficient for recognition and activation of the catalytic subunits, but the C-terminal half of the SSU is required for valine binding and response. We suggest that the C-terminal region of the SSU contributes to monomer-monomer interactions, and provide additional experimental evidence for this suggestion.


Assuntos
Acetolactato Sintase/metabolismo , Escherichia coli/enzimologia , Subunidades Proteicas/metabolismo , Acetolactato Sintase/genética , Sequência de Aminoácidos , Ativação Enzimática , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...