Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 151(21): 214502, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822091

RESUMO

The fast increase in available computation power allowed us to decrease the cooling rate in molecular dynamics (MD) simulation of vitrification by several orders of magnitude. While the reliability of the MD simulation should obviously benefit from this increase in the computational power, in some cases, it led to unexpected results. In particular, Ryltsev et al. [J. Chem. Phys. 149, 164502 (2018)] found that the most popular potentials for the Cu-Zr and Cu-Zr-Al alloys from Mendelev et al. [Philos. Mag. 89, 967 (2009)] and Cheng et al. [Phys. Rev. Lett. 102, 245501 (2009)] do not actually describe good glass forming systems but in contradiction with experiment predict rather fast crystallization of the Cu64.5Zr35.5 alloy which is the well-known example of bulk metallic glasses. In this paper, we present a new Cu-Zr semiempirical potential suitable to simulate vitrification. No crystal nucleation was observed in MD simulation using this potential in the concentration range from 75% to 5% of Zr. Since the new potential leads to about the same liquid structure and viscosity as the Cu-Zr potential from Mendelev et al. [Philos. Mag. 89, 967 (2009)] which failed to describe the good glass formability, our study clearly shows that no reliable conclusions about the glass formability can be deduced based solely on the analysis of the liquid properties and a nucleation/crystal growth study should be performed to address this question.

2.
Sci Rep ; 9(1): 6692, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040308

RESUMO

Using an effective genetic algorithm, we uncover the structure of a metastable Al41Sm5 phase that supplements its family sharing similar short-range orders. The phase evolves upon heating an amorphous Al-9.7 at.% Sm ribbon, produced by melt-spinning. The dynamical phase selection is discussed with respect to the structural connections between the short-range packing motifs in the amorphous precursor and those observed in the selected phases. The phase elucidated here is one of several newly discovered large-unit-cell phases found to form during devitrification from the glass in this binary system, further illustrating the power and efficiency of our approach, the important role of structural hierarchy in phase selection, and the richness of the metastable phase landscape accessible from the glassy structure.

3.
J Chem Phys ; 148(21): 214705, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884043

RESUMO

We developed a Tb embedded atom method potential which properly reproduces the liquid structure obtained from the ab initio molecular dynamics simulation, the hexagonal close packed (hcp)-body-centered cubic (bcc) phase transformation, and melting temperatures. At least three crystal phases [hcp, face-centered cubic (fcc), and bcc] described by this potential can coexist with the liquid phase. Thus, the developed potential provides an excellent test bed for studies of the completive phase nucleation and growth in a single component system. The molecular dynamics simulation showed that all crystal phases can grow from the liquid phase close to their melting temperatures. However, in the cases of the hcp and fcc growth from the liquid phase at very large supercoolings, the bcc phase forms at the solid-liquid interface in the close packed orientations in spite of the fact that both hcp and fcc phases are more stable than the bcc phase at these temperatures. This bcc phase closes the hcp and fcc phase from the liquid such that the remaining liquid solidifies into the bcc phase. The initial hcp phase then slowly continues growing in expense of the bcc phase.

4.
J Chem Phys ; 149(24): 244501, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30599751

RESUMO

The competition among multiple solid phases determines the final microstructures of a material. Such competition can originate at the very beginning of the solidification process. We report the results of molecular dynamics simulation of the phase competition between the hexagonal close-packed (hcp), face-centered cubic (fcc), and body-centered cubic (bcc) phases during the solidification of pure Tb. We found that the liquid supercooled below the hcp melting temperature has both bcc and hcp/fcc nuclei, but only the bcc nuclei grow such that the liquid always solidifies into the bcc phase, even at temperatures where the hcp phase is more stable. The hcp phase can only form in the last liquid droplet or at the bcc grain boundaries. Depending on the bcc grain orientations, the hcp phase jammed between the bcc grains either completely disappears or slowly grows via a solid-state massive transformation mechanism. Once the hcp phase becomes large enough, the stresses associated with its appearance can trigger a martensitic transformation. Yet, not the entire bcc phase is consumed by the martensitic transformation and the remaining bcc phase is transformed into the hcp phase via the solid-state massive transformation mechanism. Finally, if the supercooling is too large, the nucleation becomes almost barrier free and the liquid solidifies into a structure consisting of ultra-fine hcp and bcc grains after which the bcc phase quickly disappears.

5.
J Chem Phys ; 145(20): 204505, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27908127

RESUMO

The state-of-the-art experimental and atomistic simulation techniques were utilized to study the structure of the liquid and amorphous Ni62Nb38 alloy. First, the ab initio molecular dynamics (AIMD) simulation was performed at rather high temperature where the time limitations of the AIMD do not prevent to reach the equilibrium liquid structure. A semi-empirical potential of the Finnis-Sinclair (FS) type was developed to almost exactly reproduce the AIMD partial pair correlation functions (PPCFs) in a classical molecular dynamics simulation. This simulation also showed that the FS potential well reproduces the bond angle distributions. The FS potential was then employed to elongate the AIMD PPCFs and determine the total structure factor (TSF) which was found to be in excellent agreement with X-ray TSF obtained within the present study demonstrating the reliability of the AIMD for the simulation of the structure of the liquid Ni-Nb alloys as well as the reliability of the developed FS potential. The glass structure obtained with the developed potential was also found to be in excellent agreement with the X-ray data. The analysis of the structure revealed that a network of the icosahedra clusters centered on Ni atoms is forming during cooling the liquid alloy down to Tg and the Nb Z14, Z15, and Z16 clusters are attached to this network. This network is the main feature of the Ni62Nb38 alloy and further investigations of the properties of this alloy should be based on study of the behavior of this network.

6.
J Chem Phys ; 145(15): 154102, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27782472

RESUMO

New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformation and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. A temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.

7.
J Chem Phys ; 144(14): 144707, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27083745

RESUMO

We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).

8.
J Chem Phys ; 142(13): 134705, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854256

RESUMO

The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3̄m; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

9.
J Phys Condens Matter ; 27(8): 085004, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25650946

RESUMO

High-energy x-ray diffraction measurements of undercooled, electrostatically levitated Ni50Zr50 liquid droplets were performed. The observed solidification pathway proceeded through the nucleation and growth of the metastable B2 phase, which persisted for several seconds before the rapid appearance of the stable B33 phase. This sequence is shown to be consistent with predictions from classical nucleation theory using data obtained from molecular dynamics (MD) simulations. A plausible mechanism for the B2-B33 transformation is proposed and investigated through further MD simulations.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052403, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493799

RESUMO

Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at high temperatures close to the melting curve are calculated. Our theoretical approach combines fundamental measure density functional theory (applied to the hard-sphere reference system) and a perturbative approach to include the attractive interactions. The studied crystalline solids are Cu(fcc), Cu_{51}Zr_{14}(ß), CuZr(B2), CuZr_{2}(C11b), Zr(hcp), and Zr(bcc). The calculated Helmholtz free energies of crystalline solids are in good agreement with results from molecular-dynamics (MD) simulations. Using the same perturbation approach, the liquid phase free energies are calculated as a function of composition and temperature, from which the melting curve of the entire composition range of this system can be obtained. Phase diagrams are determined in this way for two leading embedded atom method potentials, and the results are compared with experimental data. Theoretical melting temperatures are compared both with experimental values and with values obtained directly from MD simulations at several compositions.

11.
Sci Rep ; 1: 194, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355709

RESUMO

The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu(64.5)Zr(35.5) alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe "Bergman triacontahedron" packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals.

12.
Phys Rev Lett ; 105(24): 245501, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21231532

RESUMO

In situ x-ray diffraction (XRD) coupled with molecular dynamics (MD) simulations have been used to quantify antisite defect trapping during crystallization. Rietveld refinement of the XRD data revealed a marked lattice distortion which involves an a axis expansion and a c axis contraction of the stable C11b phase. The observed lattice response is proportional in magnitude to the growth rate, suggesting that the behavior is associated with the kinetic trapping of lattice defects. MD simulations demonstrate that this lattice response is due to incorporation of 1% to 2% antisite defects during growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...