Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830758

RESUMO

Shank3 is a synaptic scaffolding protein that assists in tethering and organizing structural proteins and glutamatergic receptors in the postsynaptic density of excitatory synapses. The localization of Shank3 at excitatory synapses and the formation of stable Shank3 complexes is regulated by the binding of zinc to the C-terminal sterile-alpha-motif (SAM) domain of Shank3. Mutations in the SAM domain of Shank3 result in altered synaptic function and morphology, and disruption of zinc in synapses that express Shank3 leads to a reduction of postsynaptic proteins important for synaptic structure and function. This suggests that zinc supports the localization of postsynaptic proteins via Shank3. Many regions of the brain are highly enriched with free zinc inside glutamatergic vesicles at presynaptic terminals. At these synapses, zinc transporter 3 (ZnT3) moves zinc into vesicles where it is co-released with glutamate. Alterations in ZnT3 are implicated in multiple neurodevelopmental disorders, and ZnT3 knock-out (KO) mice - which lack synaptic zinc - show behavioral deficits associated with autism spectrum disorder and schizophrenia. Using male and female mice, we show that ZnT3 KO mice have smaller dendritic spines and miniature excitatory postsynaptic current amplitudes than wildtype (WT) mice in the auditory cortex. Additionally, spine size deficits in ZnT3 KO mice are restricted to synapses that express Shank3. In WT mice, synapses that express both Shank3 and ZnT3 have larger spines compared to synapses that express Shank3 but not ZnT3. Together these findings suggest a mechanism whereby presynaptic ZnT3-dependent zinc supports postsynaptic structure and function via Shank3 in a synapse-specific manner.Significance Statement Shank3 is a scaffolding protein that assists in the organization of glutamatergic receptors in the postsynaptic density of excitatory synapses in the brain. The structure and function of Shank3 is regulated by zinc ions. Specifically, zinc allows Shank3 to form tight sheets that assist in stabilizing the postsynaptic density. Zinc packaged by the zinc transporter ZnT3 which is released from presynaptic terminals may contribute to the function of Shank3. In this study, we find an association between ZnT3, Shank3, synaptic strength, and spine size, suggesting that zinc released from presynaptic terminals supports dendritic spine structure and function via interactions with Shank3.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37703503

RESUMO

The treatment of chondroblastoma in the epiphysis of the femoral head in skeletally immature individuals is challenging and often requires surgical hip dislocation. We present a unique method of percutaneous use of an expandable reamer (X-REAM, Wright Medical) to treat a chondroblastoma of the femoral head in a 9-year-old boy without requiring surgical hip dislocation. The described technique provides access to the tumor in the proximal femoral epiphysis and local tumor control. However, the approach involves placing a cannula through the epiphyseal plate, resulting in partial premature epiphyseal closure. At 5 years after surgery, the patient has an asymptomatic leg-length discrepancy and radiographic evidence of premature physeal closure, but no restrictions on activity or evidence of local recurrence. A percutaneous expandable reamer can be used to treat chondroblastoma of the femoral head while avoiding surgical hip dislocation.


Assuntos
Neoplasias Ósseas , Condroblastoma , Luxação do Quadril , Masculino , Humanos , Criança , Lâmina de Crescimento/cirurgia , Cabeça do Fêmur/cirurgia , Condroblastoma/diagnóstico por imagem , Condroblastoma/cirurgia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/cirurgia
3.
Cell Rep ; 42(8): 112932, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37585291

RESUMO

Synaptic zinc signaling modulates synaptic activity and is present in specific populations of cortical neurons, suggesting that synaptic zinc contributes to the diversity of intracortical synaptic microcircuits and their functional specificity. To understand the role of zinc signaling in the cortex, we performed whole-cell patch-clamp recordings from intratelencephalic (IT)-type neurons and pyramidal tract (PT)-type neurons in layer 5 of the mouse auditory cortex during optogenetic stimulation of specific classes of presynaptic neurons. Our results show that synaptic zinc potentiates AMPA receptor (AMPAR) function in a synapse-specific manner. We performed in vivo 2-photon calcium imaging of the same classes of neurons in awake mice and found that changes in synaptic zinc can widen or sharpen the sound-frequency tuning bandwidth of IT-type neurons but only widen the tuning bandwidth of PT-type neurons. These results provide evidence for synapse- and cell-type-specific actions of synaptic zinc in the cortex.


Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/fisiologia , Receptores de AMPA/metabolismo , Zinco , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...