Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 121(14): 2712-2720, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35715957

RESUMO

Missense mutations that compromise the plasma membrane expression (PME) of integral membrane proteins are the root cause of numerous genetic diseases. Differentiation of this class of mutations from those that specifically modify the activity of the folded protein has proven useful for the development and targeting of precision therapeutics. Nevertheless, it remains challenging to predict the effects of mutations on the stability and/ or expression of membrane proteins. In this work, we utilize deep mutational scanning data to train a series of artificial neural networks to predict the PME of transmembrane domain variants of G protein-coupled receptors from structural and/ or evolutionary features. We show that our best-performing network, which we term the PME predictor, can recapitulate mutagenic trends within rhodopsin and can differentiate pathogenic transmembrane domain variants that cause it to misfold from those that compromise its signaling. This network also generates statistically significant predictions for the relative PME of transmembrane domain variants for another class A G protein-coupled receptor (ß2 adrenergic receptor) but not for an unrelated voltage-gated potassium channel (KCNQ1). Notably, our analyses of these networks suggest structural features alone are generally sufficient to recapitulate the observed mutagenic trends. Moreover, our findings imply that networks trained in this manner may be generalizable to proteins that share a common fold. Implications of our findings for the design of mechanistically specific genetic predictors are discussed.


Assuntos
Canal de Potássio KCNQ1 , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canal de Potássio KCNQ1/metabolismo , Mutagênese , Mutação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Rodopsina/química
2.
Circ Cardiovasc Genet ; 10(5)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29021305

RESUMO

BACKGROUND: An emerging standard-of-care for long-QT syndrome uses clinical genetic testing to identify genetic variants of the KCNQ1 potassium channel. However, interpreting results from genetic testing is confounded by the presence of variants of unknown significance for which there is inadequate evidence of pathogenicity. METHODS AND RESULTS: In this study, we curated from the literature a high-quality set of 107 functionally characterized KCNQ1 variants. Based on this data set, we completed a detailed quantitative analysis on the sequence conservation patterns of subdomains of KCNQ1 and the distribution of pathogenic variants therein. We found that conserved subdomains generally are critical for channel function and are enriched with dysfunctional variants. Using this experimentally validated data set, we trained a neural network, designated Q1VarPred, specifically for predicting the functional impact of KCNQ1 variants of unknown significance. The estimated predictive performance of Q1VarPred in terms of Matthew's correlation coefficient and area under the receiver operating characteristic curve were 0.581 and 0.884, respectively, superior to the performance of 8 previous methods tested in parallel. Q1VarPred is publicly available as a web server at http://meilerlab.org/q1varpred. CONCLUSIONS: Although a plethora of tools are available for making pathogenicity predictions over a genome-wide scale, previous tools fail to perform in a robust manner when applied to KCNQ1. The contrasting and favorable results for Q1VarPred suggest a promising approach, where a machine-learning algorithm is tailored to a specific protein target and trained with a functionally validated data set to calibrate informatics tools.


Assuntos
Bases de Dados Genéticas , Variação Genética , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Feminino , Humanos , Síndrome do QT Longo/epidemiologia , Masculino , Valor Preditivo dos Testes , Domínios Proteicos
3.
Biochemistry ; 55(36): 5002-9, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27564391

RESUMO

There is a compelling and growing need to accurately predict the impact of amino acid mutations on protein stability for problems in personalized medicine and other applications. Here the ability of 10 computational tools to accurately predict mutation-induced perturbation of folding stability (ΔΔG) for membrane proteins of known structure was assessed. All methods for predicting ΔΔG values performed significantly worse when applied to membrane proteins than when applied to soluble proteins, yielding estimated concordance, Pearson, and Spearman correlation coefficients of <0.4 for membrane proteins. Rosetta and PROVEAN showed a modest ability to classify mutations as destabilizing (ΔΔG < -0.5 kcal/mol), with a 7 in 10 chance of correctly discriminating a randomly chosen destabilizing variant from a randomly chosen stabilizing variant. However, even this performance is significantly worse than for soluble proteins. This study highlights the need for further development of reliable and reproducible methods for predicting thermodynamic folding stability in membrane proteins.


Assuntos
Proteínas de Membrana/química , Estabilidade Proteica , Mutação Puntual , Termodinâmica
4.
J Cheminform ; 7: 47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26473018

RESUMO

The interaction of a small molecule with a protein target depends on its ability to adopt a three-dimensional structure that is complementary. Therefore, complete and rapid prediction of the conformational space a small molecule can sample is critical for both structure- and ligand-based drug discovery algorithms such as small molecule docking or three-dimensional quantitative structure-activity relationships. Here we have derived a database of small molecule fragments frequently sampled in experimental structures within the Cambridge Structure Database and the Protein Data Bank. Likely conformations of these fragments are stored as 'rotamers' in analogy to amino acid side chain rotamer libraries used for rapid sampling of protein conformational space. Explicit fragments take into account correlations between multiple torsion bonds and effect of substituents on torsional profiles. A conformational ensemble for small molecules can then be generated by recombining fragment rotamers with a Monte Carlo search strategy. BCL::Conf was benchmarked against other conformer generator methods including Confgen, Moe, Omega and RDKit in its ability to recover experimentally determined protein bound conformations of small molecules, diversity of conformational ensembles, and sampling rate. BCL::Conf recovers at least one conformation with a root mean square deviation of 2 Å or better to the experimental structure for 99 % of the small molecules in the Vernalis benchmark dataset. The 'rotamer' approach will allow integration of BCL::Conf into respective computational biology programs such as Rosetta.Graphical abstract:Conformation sampling is carried out using explicit fragment conformations derived from crystallographic structure databases. Molecules from the database are decomposed into fragments and most likely conformations/rotamers are used to sample correspondng sub-structure of a molecule of interest.

5.
ACS Chem Neurosci ; 5(4): 282-95, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24528109

RESUMO

A common metabotropic glutamate receptor 5 (mGlu5) allosteric site is known to accommodate diverse chemotypes. However, the structural relationship between compounds from different scaffolds and mGlu5 is not well understood. In an effort to better understand the molecular determinants that govern allosteric modulator interactions with mGlu5, we employed a combination of site-directed mutagenesis and computational modeling. With few exceptions, six residues (P654, Y658, T780, W784, S808, and A809) were identified as key affinity determinants across all seven allosteric modulator scaffolds. To improve our interpretation of how diverse allosteric modulators occupy the common allosteric site, we sampled the wealth of mGlu5 structure-activity relationship (SAR) data available by docking 60 ligands (actives and inactives) representing seven chemical scaffolds into our mGlu5 comparative model. To spatially and chemically compare binding modes of ligands from diverse scaffolds, the ChargeRMSD measure was developed. We found a common binding mode for the modulators that placed the long axes of the ligands parallel to the transmembrane helices 3 and 7. W784 in TM6 not only was identified as a key NAM cooperativity determinant across multiple scaffolds, but also caused a NAM to PAM switch for two different scaffolds. Moreover, a single point mutation in TM5, G747V, altered the architecture of the common allosteric site such that 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (VU29) was noncompetitive with the common allosteric site. Our findings highlight the subtleties of allosteric modulator binding to mGlu5 and demonstrate the utility in incorporating SAR information to strengthen the interpretation and analyses of docking and mutational data.


Assuntos
Simulação de Acoplamento Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/ultraestrutura , Sítios de Ligação , Simulação por Computador , Mutagênese Sítio-Dirigida , Ligação Proteica , Relação Estrutura-Atividade
6.
Molecules ; 18(1): 735-56, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23299552

RESUMO

With the rapidly increasing availability of High-Throughput Screening (HTS) data in the public domain, such as the PubChem database, methods for ligand-based computer-aided drug discovery (LB-CADD) have the potential to accelerate and reduce the cost of probe development and drug discovery efforts in academia. We assemble nine data sets from realistic HTS campaigns representing major families of drug target proteins for benchmarking LB-CADD methods. Each data set is public domain through PubChem and carefully collated through confirmation screens validating active compounds. These data sets provide the foundation for benchmarking a new cheminformatics framework BCL::ChemInfo, which is freely available for non-commercial use. Quantitative structure activity relationship (QSAR) models are built using Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Decision Trees (DTs), and Kohonen networks (KNs). Problem-specific descriptor optimization protocols are assessed including Sequential Feature Forward Selection (SFFS) and various information content measures. Measures of predictive power and confidence are evaluated through cross-validation, and a consensus prediction scheme is tested that combines orthogonal machine learning algorithms into a single predictor. Enrichments ranging from 15 to 101 for a TPR cutoff of 25% are observed.


Assuntos
Bases de Dados de Compostos Químicos/normas , Ensaios de Triagem em Larga Escala/normas , Relação Quantitativa Estrutura-Atividade , Algoritmos , Animais , Área Sob a Curva , Simulação por Computador , Árvores de Decisões , Descoberta de Drogas/normas , Humanos , Concentração Inibidora 50 , Ligantes , Modelos Químicos , Redes Neurais de Computação , Melhoria de Qualidade , Curva ROC , Máquina de Vetores de Suporte
7.
Proc Natl Acad Sci U S A ; 106(8): 2939-44, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19196976

RESUMO

Central pattern generators (CPGs) produce neural-motor rhythms that often depend on specialized cellular or synaptic properties such as pacemaker neurons or alternating phases of synaptic inhibition. Motivated by experimental evidence suggesting that activity in the mammalian respiratory CPG, the preBötzinger complex, does not require either of these components, we present and analyze a mathematical model demonstrating an unconventional mechanism of rhythm generation in which glutamatergic synapses and the short-term depression of excitatory transmission play key rhythmogenic roles. Recurrent synaptic excitation triggers postsynaptic Ca(2+)-activated nonspecific cation current (I(CAN)) to initiate a network-wide burst. Robust depolarization due to I(CAN) also causes voltage-dependent spike inactivation, which diminishes recurrent excitation and thus attenuates postsynaptic Ca(2+) accumulation. Consequently, activity-dependent outward currents-produced by Na/K ATPase pumps or other ionic mechanisms-can terminate the burst and cause a transient quiescent state in the network. The recovery of sporadic spiking activity rekindles excitatory interactions and initiates a new cycle. Because synaptic inputs gate postsynaptic burst-generating conductances, this rhythm-generating mechanism represents a new paradigm that can be dubbed a 'group pacemaker' in which the basic rhythmogenic unit encompasses a fully interdependent ensemble of synaptic and intrinsic components. This conceptual framework should be considered as an alternative to traditional models when analyzing CPGs for which mechanistic details have not yet been elucidated.


Assuntos
Cálcio/metabolismo , Canais Iônicos/metabolismo , Sinapses/fisiologia , Potenciais de Ação , Simulação por Computador , Ativação do Canal Iônico , Sódio/metabolismo
8.
J Physiol ; 586(7): 1921-36, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18258659

RESUMO

We measured a low-threshold, inactivating K+ current, i.e. A-current (I(A)), in respiratory neurons of the preBötzinger complex (preBötC) in rhythmically active slice preparations from neonatal C57BL/6 mice. The majority of inspiratory neurons (21/34 = 61.8%), but not expiratory neurons (1/8 = 12.5%), expressed I(A). In whole-cell and somatic outside-out patches I(A) activated at -60 mV (half-activation voltage measured -16.3 mV) and only fully inactivated above -40 mV (half-inactivation voltage measured -85.6 mV), indicating that I(A) can influence membrane trajectory at baseline voltages during respiratory rhythm generation in vitro. 4-Aminopyridine (4-AP, 2 mm) attenuated I(A) in both whole-cell and somatic outside-out patches. In the context of rhythmic network activity, 4-AP caused irregular respiratory-related motor output on XII nerves and disrupted rhythmogenesis as detected with whole-cell and field recordings in the preBötC. Whole-cell current-clamp recordings showed that 4-AP changed the envelope of depolarization underlying inspiratory bursts (i.e. inspiratory drive potentials) from an incrementing pattern to a decrementing pattern during rhythm generation and abolished current pulse-induced delayed excitation. These data suggest that I(A) opposes excitatory synaptic depolarizations at baseline voltages of approximately -60 mV and influences the inspiratory burst pattern. We propose that I(A) promotes orderly recruitment of constituent rhythmogenic neurons by minimizing the activity of these neurons until they receive massive coincident synaptic input, which reduces the periodic fluctuations of inspiratory activity.


Assuntos
4-Aminopiridina/farmacologia , Bulbo/fisiologia , Neurônios/fisiologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Mecânica Respiratória/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos/fisiologia , Inalação/fisiologia , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Técnicas de Patch-Clamp , Periodicidade , Bloqueadores dos Canais de Potássio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...