Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38496403

RESUMO

Brain-machine interfaces (BMI) aim to restore function to persons living with spinal cord injuries by 'decoding' neural signals into behavior. Recently, nonlinear BMI decoders have outperformed previous state-of-the-art linear decoders, but few studies have investigated what specific improvements these nonlinear approaches provide. In this study, we compare how temporally convolved feedforward neural networks (tcFNNs) and linear approaches predict individuated finger movements in open and closed-loop settings. We show that nonlinear decoders generate more naturalistic movements, producing distributions of velocities 85.3% closer to true hand control than linear decoders. Addressing concerns that neural networks may come to inconsistent solutions, we find that regularization techniques improve the consistency of tcFNN convergence by 194.6%, along with improving average performance, and training speed. Finally, we show that tcFNN can leverage training data from multiple task variations to improve generalization. The results of this study show that nonlinear methods produce more naturalistic movements and show potential for generalizing over less constrained tasks. Teaser: A neural network decoder produces consistent naturalistic movements and shows potential for real-world generalization through task variations.

2.
J Neural Eng ; 20(4)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37567222

RESUMO

Objective.While brain-machine interfaces (BMIs) are promising technologies that could provide direct pathways for controlling the external world and thus regaining motor capabilities, their effectiveness is hampered by decoding errors. Previous research has demonstrated the detection and correction of BMI outcome errors, which occur at the end of trials. Here we focus on continuous detection and correction of BMI execution errors, which occur during real-time movements.Approach.Two adult male rhesus macaques were implanted with Utah arrays in the motor cortex. The monkeys performed single or two-finger group BMI tasks where a Kalman filter decoded binned spiking-band power into intended finger kinematics. Neural activity was analyzed to determine how it depends not only on the kinematics of the fingers, but also on the distance of each finger-group to its target. We developed a method to detect erroneous movements, i.e. consistent movements away from the target, from the same neural activity used by the Kalman filter. Detected errors were corrected by a simple stopping strategy, and the effect on performance was evaluated.Mainresults.First we show that including distance to target explains significantly more variance of the recorded neural activity. Then, for the first time, we demonstrate that neural activity in motor cortex can be used to detect execution errors during BMI controlled movements. Keeping false positive rate below5%, it was possible to achieve mean true positive rate of28.1%online. Despite requiring 200 ms to detect and react to suspected errors, we were able to achieve a significant improvement in task performance via reduced orbiting time of one finger group.Significance.Neural activity recorded in motor cortex for BMI control can be used to detect and correct BMI errors and thus to improve performance. Further improvements may be obtained by enhancing classification and correction strategies.


Assuntos
Interfaces Cérebro-Computador , Animais , Masculino , Macaca mulatta , Eletrodos Implantados , Dedos , Movimento
3.
Elife ; 122023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37284744

RESUMO

A key factor in the clinical translation of brain-machine interfaces (BMIs) for restoring hand motor function will be their robustness to changes in a task. With functional electrical stimulation (FES) for example, the patient's own hand will be used to produce a wide range of forces in otherwise similar movements. To investigate the impact of task changes on BMI performance, we trained two rhesus macaques to control a virtual hand with their physical hand while we added springs to each finger group (index or middle-ring-small) or altered their wrist posture. Using simultaneously recorded intracortical neural activity, finger positions, and electromyography, we found that decoders trained in one context did not generalize well to other contexts, leading to significant increases in prediction error, especially for muscle activations. However, with respect to online BMI control of the virtual hand, changing either the decoder training task context or the hand's physical context during online control had little effect on online performance. We explain this dichotomy by showing that the structure of neural population activity remained similar in new contexts, which could allow for fast adjustment online. Additionally, we found that neural activity shifted trajectories proportional to the required muscle activation in new contexts. This shift in neural activity possibly explains biases to off-context kinematic predictions and suggests a feature that could help predict different magnitude muscle activations while producing similar kinematics.


Assuntos
Interfaces Cérebro-Computador , Animais , Macaca mulatta , Dedos/fisiologia , Movimento/fisiologia , Mãos/fisiologia , Eletromiografia/métodos
4.
bioRxiv ; 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37292755

RESUMO

Brain-machine interfaces (BMIs) can restore motor function to people with paralysis but are currently limited by the accuracy of real-time decoding algorithms. Recurrent neural networks (RNNs) using modern training techniques have shown promise in accurately predicting movements from neural signals but have yet to be rigorously evaluated against other decoding algorithms in a closed-loop setting. Here we compared RNNs to other neural network architectures in real-time, continuous decoding of finger movements using intracortical signals from nonhuman primates. Across one and two finger online tasks, LSTMs (a type of RNN) outperformed convolutional and transformer-based neural networks, averaging 18% higher throughput than the convolution network. On simplified tasks with a reduced movement set, RNN decoders were allowed to memorize movement patterns and matched able-bodied control. Performance gradually dropped as the number of distinct movements increased but did not go below fully continuous decoder performance. Finally, in a two-finger task where one degree-of-freedom had poor input signals, we recovered functional control using RNNs trained to act both like a movement classifier and continuous decoder. Our results suggest that RNNs can enable functional real-time BMI control by learning and generating accurate movement patterns.

5.
J Neural Eng ; 20(3)2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37084719

RESUMO

Objective.Brain-machine interfaces (BMIs) have shown promise in extracting upper extremity movement intention from the thoughts of nonhuman primates and people with tetraplegia. Attempts to restore a user's own hand and arm function have employed functional electrical stimulation (FES), but most work has restored discrete grasps. Little is known about how well FES can control continuous finger movements. Here, we use a low-power brain-controlled functional electrical stimulation (BCFES) system to restore continuous volitional control of finger positions to a monkey with a temporarily paralyzed hand.Approach.We delivered a nerve block to the median, radial, and ulnar nerves just proximal to the elbow to simulate finger paralysis, then used a closed-loop BMI to predict finger movements the monkey was attempting to make in two tasks. The BCFES task was one-dimensional in which all fingers moved together, and we used the BMI's predictions to control FES of the monkey's finger muscles. The virtual two-finger task was two-dimensional in which the index finger moved simultaneously and independently from the middle, ring, and small fingers, and we used the BMI's predictions to control movements of virtual fingers, with no FES.Main results.In the BCFES task, the monkey improved his success rate to 83% (1.5 s median acquisition time) when using the BCFES system during temporary paralysis from 8.8% (9.5 s median acquisition time, equal to the trial timeout) when attempting to use his temporarily paralyzed hand. In one monkey performing the virtual two-finger task with no FES, we found BMI performance (task success rate and completion time) could be completely recovered following temporary paralysis by executing recalibrated feedback-intention training one time.Significance.These results suggest that BCFES can restore continuous finger function during temporary paralysis using existing low-power technologies and brain-control may not be the limiting factor in a BCFES neuroprosthesis.


Assuntos
Interfaces Cérebro-Computador , Animais , Extremidade Superior , Quadriplegia , Movimento/fisiologia , Haplorrinos , Primatas
6.
Nat Commun ; 13(1): 6899, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371498

RESUMO

Despite the rapid progress and interest in brain-machine interfaces that restore motor function, the performance of prosthetic fingers and limbs has yet to mimic native function. The algorithm that converts brain signals to a control signal for the prosthetic device is one of the limitations in achieving rapid and realistic finger movements. To achieve more realistic finger movements, we developed a shallow feed-forward neural network to decode real-time two-degree-of-freedom finger movements in two adult male rhesus macaques. Using a two-step training method, a recalibrated feedback intention-trained (ReFIT) neural network is introduced to further improve performance. In 7 days of testing across two animals, neural network decoders, with higher-velocity and more natural appearing finger movements, achieved a 36% increase in throughput over the ReFIT Kalman filter, which represents the current standard. The neural network decoders introduced herein demonstrate real-time decoding of continuous movements at a level superior to the current state-of-the-art and could provide a starting point to using neural networks for the development of more naturalistic brain-controlled prostheses.


Assuntos
Interfaces Cérebro-Computador , Animais , Masculino , Macaca mulatta , Redes Neurais de Computação , Movimento , Algoritmos
7.
J Neural Eng ; 19(3)2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35613546

RESUMO

Objective. Brain-machine interfaces (BMIs) have the potential to restore motor function but are currently limited by electrode count and long-term recording stability. These challenges may be solved through the use of free-floating 'motes' which wirelessly transmit recorded neural signals, if power consumption can be kept within safe levels when scaling to thousands of motes. Here, we evaluated a pulse-interval modulation (PIM) communication scheme for infrared (IR)-based motes that aims to reduce the wireless data rate and system power consumption.Approach. To test PIM's ability to efficiently communicate neural information, we simulated the communication scheme in a real-time closed-loop BMI with non-human primates. Additionally, we performed circuit simulations of an IR-based 1000-mote system to calculate communication accuracy and total power consumption.Main results. We found that PIM at 1 kb/s per channel maintained strong correlations with true firing rate and matched online BMI performance of a traditional wired system. Closed-loop BMI tests suggest that lags as small as 30 ms can have significant performance effects. Finally, unlike other IR communication schemes, PIM is feasible in terms of power, and neural data can accurately be recovered on a receiver using 3 mW for 1000 channels.Significance.These results suggest that PIM-based communication could significantly reduce power usage of wireless motes to enable higher channel-counts for high-performance BMIs.


Assuntos
Interfaces Cérebro-Computador , Animais , Comunicação , Eletrodos , Primatas , Tecnologia sem Fio
8.
Neuron ; 109(19): 3164-3177.e8, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34499856

RESUMO

Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain control, the ReFIT Kalman filter could predict individuated finger group movements with high performance. Next, training ridge regression decoders with individual movements was sufficient to predict untrained combined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions. Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-dimensional tasks with the performance levels required for naturalistic neural prostheses.


Assuntos
Interfaces Cérebro-Computador , Dedos/fisiologia , Movimento/fisiologia , Próteses Neurais , Algoritmos , Animais , Fenômenos Biomecânicos , Eletrodos Implantados , Dedos/inervação , Previsões , Modelos Lineares , Macaca mulatta , Masculino , Microeletrodos , Córtex Motor/fisiologia , Postura/fisiologia , Desenho de Prótese , Desempenho Psicomotor
9.
Int Rev Neurobiol ; 159: 153-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34446245

RESUMO

One of the most exciting advances to emerge in neural interface technologies has been the development of real-time brain-machine interface (BMI) neuroprosthetic devices to restore upper extremity function. BMI neuroprostheses, made possible by synergistic advances in neural recording technologies, high-speed computation and signal processing, and neuroscience, have permitted the restoration of volitional movement to patients suffering the loss of upper-extremity function. In this chapter, we review the scientific and technological advances underlying these remarkable devices. After presenting an introduction to the current state of the field, we provide an accessible technical discussion of the two fundamental requirements of a successful neuroprosthesis: signal extraction from the brain and signal decoding that results in robust prosthetic control. We close with a presentation of emerging technologies that are likely to substantially advance the field.


Assuntos
Interfaces Cérebro-Computador , Extremidade Superior , Humanos , Recuperação de Função Fisiológica , Extremidade Superior/fisiologia
10.
J Assoc Res Otolaryngol ; 18(1): 165-181, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27766433

RESUMO

Vowels make a strong contribution to speech perception under natural conditions. Vowels are encoded in the auditory nerve primarily through neural synchrony to temporal fine structure and to envelope fluctuations rather than through average discharge rate. Neural synchrony is thought to contribute less to vowel coding in central auditory nuclei, consistent with more limited synchronization to fine structure and the emergence of average-rate coding of envelope fluctuations. However, this hypothesis is largely unexplored, especially in background noise. The present study examined coding mechanisms at the level of the midbrain that support behavioral sensitivity to simple vowel-like sounds using neurophysiological recordings and matched behavioral experiments in the budgerigar. Stimuli were harmonic tone complexes with energy concentrated at one spectral peak, or formant frequency, presented in quiet and in noise. Behavioral thresholds for formant-frequency discrimination decreased with increasing amplitude of stimulus envelope fluctuations, increased in noise, and were similar between budgerigars and humans. Multiunit recordings in awake birds showed that the midbrain encodes vowel-like sounds both through response synchrony to envelope structure and through average rate. Whereas neural discrimination thresholds based on either coding scheme were sufficient to support behavioral thresholds in quiet, only synchrony-based neural thresholds could account for behavioral thresholds in background noise. These results reveal an incomplete transformation to average-rate coding of vowel-like sounds in the midbrain. Model simulations suggest that this transformation emerges due to modulation tuning, which is shared between birds and mammals. Furthermore, the results underscore the behavioral relevance of envelope synchrony in the midbrain for detection of small differences in vowel formant frequency under real-world listening conditions.


Assuntos
Limiar Auditivo , Mesencéfalo/fisiologia , Ruído , Som , Adulto , Animais , Nervo Coclear/fisiologia , Feminino , Humanos , Masculino , Melopsittacus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...