Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 11: 526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435255

RESUMO

The MADS-domain transcription factor SEEDSTICK (STK) controls several aspects of plant reproduction. STK is co-expressed with CESTA (CES), a basic Helix-Loop-Helix (bHLH) transcription factor-encoding gene. CES was reported to control redundantly with the brassinosteroid positive signaling factors BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) and BEE3 the development of the transmitting tract. Combining the stk ces-4 mutants led to a reduction in ovule fertilization due to a defect in carpel fusion which, caused the formation of holes at the center of the septum where the transmitting tract differentiates. Combining the stk mutant with the bee1 bee3 ces-4 triple mutant showed an increased number of unfertilized ovules and septum defects. The transcriptome profile of this quadruple mutant revealed a small subset of differentially expressed genes which are mainly involved in cell death, extracellular matrix and cell wall development. Our data evidence a regulatory gene network controlling transmitting tract development regulated directly or indirectly by a STK-CES containing complex and reveal new insights in the regulation of transmitting tract development by bHLH and MADS-domain transcription factors.

3.
Front Plant Sci ; 10: 1351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708954

RESUMO

The REproductive Meristem (REM) gene family encodes for transcription factors belonging to the B3 DNA binding domain superfamily. In Arabidopsis thaliana, the REM gene family is composed of 45 members, preferentially expressed during flower, ovule, and seed developments. Only a few members of this family have been functionally characterized: VERNALIZATION1 (VRN1) and, most recently, TARGET OF FLC AND SVP1 (TFS1) regulate flowering time and VERDANDI (VDD), together with VALKYRIE (VAL) that control the death of the receptive synergid cell in the female gametophyte. We investigated the role of REM34, REM35, and REM36, three closely related and linked genes similarly expressed in both female and male gametophytes. Simultaneous silencing by RNA interference (RNAi) caused about 50% of the ovules to remain unfertilized. Careful evaluation of both ovule and pollen developments showed that this partial sterility of the transgenic RNAi lines was due to a postmeiotic block in both female and male gametophytes. Furthermore, protein interaction assays revealed that REM34 and REM35 interact, which suggests that they work together during the first stages of gametogenesis.

4.
Plant Cell ; 30(9): 2082-2098, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30099384

RESUMO

The plastid-localized phosphoglucose isomerase isoform PGI1 is an important determinant of growth in Arabidopsis thaliana, likely due to its involvement in the biosynthesis of plastidial isoprenoid-derived hormones. Here, we investigated whether PGI1 also influences seed yields. PGI1 is strongly expressed in maturing seed embryos and vascular tissues. PGI1-null pgi1-2 plants had ∼60% lower seed yields than wild-type plants, with reduced numbers of inflorescences and thus fewer siliques and seeds per plant. These traits were associated with low bioactive gibberellin (GA) contents. Accordingly, wild-type phenotypes were restored by exogenous GA application. pgi1-2 seeds were lighter and accumulated ∼50% less fatty acids (FAs) and ∼35% less protein than wild-type seeds. Seeds of cytokinin-deficient plants overexpressing CYTOKININ OXIDASE/DEHYDROGENASE1 (35S:AtCKX1) and GA-deficient ga20ox1 ga20ox2 mutants did not accumulate low levels of FAs, and exogenous application of the cytokinin 6-benzylaminopurine and GAs did not rescue the reduced weight and FA content of pgi1-2 seeds. Seeds from reciprocal crosses between pgi1-2 and wild-type plants accumulated wild-type levels of FAs and proteins. Therefore, PGI1 is an important determinant of Arabidopsis seed yield due to its involvement in two processes: GA-mediated reproductive development and the metabolic conversion of plastidial glucose-6-phosphate to storage reserves in the embryo.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Plastídeos/metabolismo , Sementes/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato Isomerase/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Sementes/enzimologia
5.
Plant Cell Rep ; 37(2): 293-306, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29080908

RESUMO

KEY MESSAGE: BbrizGID1 is expressed in the nucellus of apomictic Brachiaria brizantha, previous to aposporous initial differentiation. AtGID1a overexpression triggers differentiation of Arabidopsis thaliana MMC-like cells, suggesting its involvement in ovule development. GIBBERELLIN-INSENSITIVE DWARF1 (GID1) is a gibberellin receptor previously identified in plants and associated with reproductive development, including ovule formation. In this work, we characterized the Brachiaria brizantha GID1 gene (BbrizGID1). BbrizGID1 showed up to 92% similarity to GID1-like gibberellin receptors of other plants of the Poaceae family and around 58% to GID1-like gibberellin receptors of Arabidopsis thaliana. BbrizGID1 was more expressed in ovaries at megasporogenesis than in ovaries at megagametogenesis of both sexual and apomictic plants. In ovules, BbrizGID1 transcripts were detected in the megaspore mother cell (MMC) of sexual and apomictic B. brizantha. Only in the apomictic plants, expression was also observed in the surrounding nucellar cells, a region in which aposporous initial cells differentiate to form the aposporic embryo sac. AtGID1a ectopic expression in Arabidopsis determines the formation of MMC-like cells in the nucellus, close to the MMC, that did not own MMC identity. Our results suggest that GID1 might be involved in the proper differentiation of a single MMC during ovule development and provide valuable information on the role of GID1 in sexual and apomictic reproduction.


Assuntos
Brachiaria/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Apomixia/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brachiaria/crescimento & desenvolvimento , Brachiaria/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Homologia de Sequência de Aminoácidos
6.
Development ; 143(15): 2780-90, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27338615

RESUMO

Fertilization in flowering plants requires a complex series of coordinated events involving interaction between the male and female gametophyte. We report here molecular data on one of the key events underpinning this process - the death of the receptive synergid cell and the coincident bursting of the pollen tube inside the ovule to release the sperm. We show that two REM transcription factors, VALKYRIE (VAL) and VERDANDI (VDD), both targets of the ovule identity MADS-box complex SEEDSTICK-SEPALLATA3, interact to control the death of the receptive synergid cell. In vdd-1/+ mutants and VAL_RNAi lines, we find that GAMETOPHYTIC FACTOR 2 (GFA2), which is required for synergid degeneration, is downregulated, whereas expression of FERONIA (FER) and MYB98, which are necessary for pollen tube attraction and perception, remain unaffected. We also demonstrate that the vdd-1/+ phenotype can be rescued by expressing VDD or GFA2 in the synergid cells. Taken together, our findings reveal that the death of the receptive synergid cell is essential for maintenance of the following generations, and that a complex comprising VDD and VAL regulates this event.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Células Germinativas Vegetais/metabolismo , Tubo Polínico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
PLoS One ; 10(3): e0120503, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781174

RESUMO

Abscission is the regulated process of detachment of an organ from a plant. In apple the abscission of fruits occurs during their early development to control the fruit load depending on the nutritional state of the plant. In order to control production and obtain fruits with optimal market qualities, the horticultural procedure of thinning is performed to further reduce the number of fruitlets. In this study we have conducted a transcriptomic profiling of seeds from two different types of fruitlets, according to size and position in the fruit cluster. Transcriptomic profiles of central and lateral fruit seeds were obtained by RNAseq. Comparative analysis was performed by the functional categorization of differentially expressed genes by means of Gene Ontology (GO) annotation of the apple genome. Our results revealed the overexpression of genes involved in responses to stress, hormone biosynthesis and also the response and/or transport of auxin and ethylene. A smaller set of genes, mainly related to ion transport and homeostasis, were found to be down-regulated. The transcriptome characterization described in this manuscript contributes to unravelling the molecular mechanisms and pathways involved in the physiological abscission of apple fruits and suggests a role for seeds in this process.


Assuntos
Malus/metabolismo , Sementes/metabolismo , Transcriptoma , Malus/genética , Malus/fisiologia
8.
Evol Dev ; 17(1): 82-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25627715

RESUMO

One successful mechanism of seed dispersal in plants involves production of edible fleshy structures which attract frugivorous animals and transfer this task to them. Not only Angiosperms but also Gymnosperms may use the fleshy fruit habit for seed dispersal, and a similar suite of MADS-box genes may be expressed as these structures form. Magnolia grandiflora produces dry follicles which, at maturity, open to reveal brightly colored fleshy seeds. This species thus also employs endozoochory for seed dispersal, although it produces dry fruits. Molecular analysis reveals that genes involved in softening and color changes are expressed at late stages of seed development, when the fleshy seed sarcotesta softens and accumulates carotenoids. Several MADS-box genes have also been studied and results highlight the existence of a basic genetic toolkit which may be common to all fleshy fruit-like structures, independently of their anatomic origin. According to their expression patterns, one of two AGAMOUS genes and the three SEPALLATA genes known so far in Magnolia are of particular interest. Duplication of AGAMOUS already occurs in both Nymphaeales and Magnoliids, although the lack of functional gene analysis prevents comparisons with known duplications in the AGAMOUS lineage of core Eudicots.


Assuntos
Magnolia/genética , Sementes/metabolismo , Evolução Molecular , Frutas/anatomia & histologia , Frutas/química , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Magnolia/embriologia , Magnolia/metabolismo , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Sementes/anatomia & histologia , Transcriptoma
9.
Ann Bot ; 114(7): 1507-15, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25002525

RESUMO

BACKGROUND AND AIMS: The REM (Reproductive Meristem) gene family of Arabidopsis thaliana is part of the B3 DNA-binding domain superfamily. Despite the fact that several groups have worked on the REM genes for many years, little is known about the function of this transcription factor family. This study aims to identify a set of REM genes involved in flower development and to characterize their function. METHODS: In order to provide an overview of the REM gene family, a detailed expression analysis for all REM genes of A. thaliana was performed and combined with a meta-analysis of ChIP-sequencing and microarray experiments. KEY RESULTS: Two sets of phylogenetically closely related REM genes, namely REM23, REM24 and REM25, and REM34, REM35 and REM36, were identified as possibly being involved in the early stages of flower development. Single- and double-mutant combinations were analysed for these genes, and no phenotypic effects were detected during flower development. CONCLUSIONS: The data suggest that the REM34, REM35 and REM36 group is the most interesting one, as REM34 is co-expressed with the floral meristem identity (FMI) genes, they are bound by AP1, SVP, AP3 and PI, and they are expressed in the floral meristem and during the earliest stages of flower development. However, it appears that high levels of functional redundancy may conceal the exact function of these transcription factor genes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Análise em Microsséries , Mutação , Filogenia , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Exp Bot ; 65(17): 4731-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913630

RESUMO

Successful plant reproduction relies on the perfect orchestration of singular processes that culminate in the product of reproduction: the seed. The floral transition, floral organ development, and fertilization are well-studied processes and the genetic regulation of the various steps is being increasingly unveiled. Initially, based predominantly on genetic studies, the regulatory pathways were considered to be linear, but recent genome-wide analyses, using high-throughput technologies, have begun to reveal a different scenario. Complex gene regulatory networks underlie these processes, including transcription factors, microRNAs, movable factors, hormones, and chromatin-modifying proteins. Here we review recent progress in understanding the networks that control the major steps in plant reproduction, showing how new advances in experimental and computational technologies have been instrumental. As these recent discoveries were obtained using the model species Arabidopsis thaliana, we will restrict this review to regulatory networks in this important model species. However, more fragmentary information obtained from other species reveals that both the developmental processes and the underlying regulatory networks are largely conserved, making this review also of interest to those studying other plant species.


Assuntos
Arabidopsis/fisiologia , Redes Reguladoras de Genes , Arabidopsis/genética , Biologia Computacional , Reprodução
11.
Plant Cell ; 25(7): 2560-72, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23847151

RESUMO

MADS domain transcription factors are key regulators of eukaryotic development. In plants, the homeotic MIKC MADS factors that regulate floral organ identity have been studied in great detail. Based on genetic and protein-protein interaction studies, a floral quartet model was proposed that describes how these MADS domain proteins assemble into higher order complexes to regulate their target genes. However, despite the attractiveness of this model and its general acceptance in the literature, solid in vivo proof has never been provided. To gain deeper insight into the mechanisms of transcriptional regulation by MADS domain factors, we studied how SEEDSTICK (STK) and SEPALLATA3 (SEP3) directly regulate the expression of the reproductive meristem gene family transcription factor-encoding gene VERDANDI (VDD). Our data show that STK-SEP3 dimers can induce loop formation in the VDD promoter by binding to two nearby CC(A/T)6GG (CArG) boxes and that this is essential for promoter activity. Our in vivo data show that the size and position of this loop, determined by the choice of CArG element usage, is essential for correct expression. Our studies provide solid in vivo evidence for the floral quartet model.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , DNA de Plantas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência de Bases , DNA de Plantas/química , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Immunoblotting , Hibridização In Situ , Proteínas de Domínio MADS/genética , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos/genética , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética
12.
Plant J ; 70(3): 409-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22176531

RESUMO

The haploid generation of flowering plants develops within the sporophytic tissues of the ovule. After fertilization, the maternal seed coat develops in a coordinated manner with formation of the embryo and endosperm. In the arabidopsis bsister (abs) mutant, the endothelium, which is the most inner cell layer of the integuments that surround the haploid embryo sac, does not accumulate proanthocyanidins and the cells have an abnormal morphology. However, fertility is not affected in abs single mutants. SEEDSTICK regulates ovule identity redundantly with SHATTERPROOF 1 (SHP1) and SHP2 while a role in the control of fertility was not reported previously. Here we describe the characterization of the abs stk double mutant. This double mutant develops very few seeds due to both a reduced number of fertilized ovules and seed abortions later during development. Morphological analysis revealed a total absence of endothelium in this double mutant. Additionally, massive starch accumulation was observed in the embryo sac. The phenotype of the abs stk double mutant highlights the importance of the maternal-derived tissues, particularly the endothelium, for the development of the next generation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Domínio MADS/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Germinação , Hibridização In Situ , Proteínas de Domínio MADS/genética , Mutação , Óvulo Vegetal/citologia , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/fisiologia , Fenótipo , Plantas Geneticamente Modificadas , Ploidias , Tubo Polínico/citologia , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/fisiologia , Polinização , Proantocianidinas/metabolismo , Sementes/citologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Sex Plant Reprod ; 23(3): 199-205, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20162305

RESUMO

The pollen specificity of the Arabidopsis arabinogalactan protein (AGP) genes AGP6 and AGP11 suggests that they are integral to pollen biogenesis, and their high percent of sequence similarity may indicate a potential for overlapping function. Arabidopsis agp6 agp11 double null mutants have been studied in our laboratory, and in the present work, we characterize the germination and growth of its pollen. When compared to wild type, mutant agp6 agp11 pollen displayed reduced germination and elongation, both in vivo and in vitro, and precocious germination inside the anthers, provided that sufficient moisture was available. This characteristic was not observed in wild type plants, even in water content conditions which for the mutant were sufficient for pollen germination. Therefore, an additional distinctive phenotypic trait of arabinogalactan proteins AGP6 and AGP11 may be to avert untimely germination of pollen. Such AGPs may control germination through water uptake, suggesting an important biological function of this gene family in pollen.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Germinação , Mutação , Pólen/crescimento & desenvolvimento , Proteoglicanas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Pólen/genética , Pólen/metabolismo , Proteoglicanas/metabolismo , Água/metabolismo
14.
J Exp Bot ; 60(11): 3133-42, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19433479

RESUMO

Arabinogalactan proteins (AGPs) are structurally complex plasma membrane and cell wall proteoglycans that are implicated in diverse developmental processes, including plant sexual reproduction. Male gametogenesis (pollen grain development) is fundamental to plant sexual reproduction. The role of two abundant, pollen-specific AGPs, AGP6, and AGP11, have been investigated here. The pollen specificity of these proteoglycans suggested that they are integral to pollen biogenesis and their strong sequence homology indicated a potential for overlapping function. Indeed, single gene transposon insertion knockouts for both AGPs showed no discernible phenotype. However, in plants homozygous for one of the insertions and heterozygous for the other, in homozygous double mutants, and in RNAi and amiRNA transgenic plants that were down-regulated for both genes, many pollen grains failed to develop normally, leading to their collapse. The microscopic observations of these aborted pollen grains showed a condensed cytoplasm, membrane blebbing and the presence of small lytic vacuoles. Later in development, the generative cells that arise from mitotic divisions were not seen to go into the second mitosis. Anther wall development, the establishment of the endothecium thickenings, the opening of the stomium, and the deposition of the pollen coat were all normal in the knockout and knockdown lines. Our data provide strong evidence that these two proteoglycans have overlapping and important functions in gametophytic pollen grain development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Inativação Gênica , Proteoglicanas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mutagênese Insercional , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Proteoglicanas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...