Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(35): e2200960119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35951647

RESUMO

Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.


Assuntos
Encéfalo , COVID-19 , Viroses do Sistema Nervoso Central , SARS-CoV-2 , Astrócitos/patologia , Astrócitos/virologia , Encéfalo/patologia , Encéfalo/virologia , COVID-19/complicações , COVID-19/patologia , Viroses do Sistema Nervoso Central/etiologia , Viroses do Sistema Nervoso Central/patologia , Humanos , Síndrome de COVID-19 Pós-Aguda
2.
Front Neurosci ; 15: 674576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887719

RESUMO

Oropouche virus (OROV) is an emerging arbovirus in South and Central Americas with high spreading potential. OROV infection has been associated with neurological complications and OROV genomic RNA has been detected in cerebrospinal fluid from patients, suggesting its neuroinvasive potential. Motivated by these findings, neurotropism and neuropathogenesis of OROV have been investigated in vivo in murine models, which do not fully recapitulate the complexity of the human brain. Here we have used slice cultures from adult human brains to investigate whether OROV is capable of infecting mature human neural cells in a context of preserved neural connections and brain cytoarchitecture. Our results demonstrate that human neural cells can be infected ex vivo by OROV and support the production of infectious viral particles. Moreover, OROV infection led to the release of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and diminished cell viability 48 h post-infection, indicating that OROV triggers an inflammatory response and tissue damage. Although OROV-positive neurons were observed, microglia were the most abundant central nervous system (CNS) cell type infected by OROV, suggesting that they play an important role in the response to CNS infection by OROV in the adult human brain. Importantly, we found no OROV-infected astrocytes. To the best of our knowledge, this is the first direct demonstration of OROV infection in human brain cells. Combined with previous data from murine models and case reports of OROV genome detection in cerebrospinal fluid from patients, our data shed light on OROV neuropathogenesis and help raising awareness about acute and possibly chronic consequences of OROV infection in the human brain.

3.
Dev Neurosci ; 42(5-6): 230-236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33706310

RESUMO

The tuberous sclerosis complex (TSC), focal cortical dysplasia IIB (FCD IIB), and hemimegalencephaly (HME) exhibit similar molecular features that are dependent on the hyperactivation of the mTOR pathway. They are all associated with refractory epilepsy and the need for surgical resection with varying outcomes. The phosphorylated protein S6 (pS6) is a downstream target of mTOR, whose increased expression might indicate mTOR hyperactivation, but which is also present when there is no alteration in the pathway (such as in FCD type I). We have performed immunohistochemical marking and quantification of pS6 in resected brain specimens of 26 patients clinically and histologically diagnosed with TSC, FCD IIB, or HME and compared this data to a control group of 25 patients, to measure the extent of pS6 positivity and its correlation with clinical aspects. Our results suggest that pS6 may serve as a reliable biomarker in epilepsy and that a greater percentage of pS6 marking can relate to more severe forms of mTOR-dependent brain anomalies.


Assuntos
Biomarcadores/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Proteína S6 Ribossômica/metabolismo , Adolescente , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia/complicações , Epilepsia/metabolismo , Epilepsia/cirurgia , Feminino , Hemimegalencefalia/complicações , Hemimegalencefalia/metabolismo , Hemimegalencefalia/cirurgia , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical do Grupo I/complicações , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/cirurgia , Fosforilação , Esclerose Tuberosa/complicações , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/cirurgia
4.
J Neurosci Methods ; 307: 203-209, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859877

RESUMO

BACKGROUND: Slice cultures have been prepared from several organs. With respect to the brain, advantages of slice cultures over dissociated cell cultures include maintenance of the cytoarchitecture and neuronal connectivity. Slice cultures from adult human brain have been reported and constitute a promising method to study neurological diseases. Despite this potential, few studies have characterized in detail cell survival and function along time in short-term, free-floating cultures. NEW METHOD: We used tissue from adult human brain cortex from patients undergoing temporal lobectomy to prepare 200 µm-thick slices. Along the period in culture, we evaluated neuronal survival, histological modifications, and neurotransmitter release. The toxicity of Alzheimer's-associated Aß oligomers (AßOs) to cultured slices was also analyzed. RESULTS: Neurons in human brain slices remain viable and neurochemically active for at least four days in vitro, which allowed detection of binding of AßOs. We further found that slices exposed to AßOs presented elevated levels of hyperphosphorylated Tau, a hallmark of Alzheimer's disease. COMPARISON WITH EXISTING METHOD(S): Although slice cultures from adult human brain have been previously prepared, this is the first report to analyze cell viability and neuronal activity in short-term free-floating cultures as a function of days in vitro. CONCLUSIONS: Once surgical tissue is available, the current protocol is easy to perform and produces functional slices from adult human brain. These slice cultures may represent a preferred model for translational studies of neurodegenerative disorders when long term culturing in not required, as in investigations on AßO neurotoxicity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Adulto , Análise de Variância , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Fosfopiruvato Hidratase/metabolismo , Cloreto de Potássio/farmacologia , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...