Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 6203, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996333

RESUMO

Bacteremia is a leading cause of death in sub-Saharan Africa where childhood mortality rates are the highest in the world. The early diagnosis of bacteremia and initiation of treatment saves lives, especially in high-disease burden areas. However, diagnosing bacteremia is challenging for clinicians, especially in children presenting with co-infections such as malaria and HIV. There is an urgent need for a rapid method for detecting bacteremia in pediatric patients with co-morbidities to inform treatment. In this manuscript, we have developed and clinically validated a novel method for the direct detection of amphiphilic pathogen biomarkers indicative of bacteremia, directly in aqueous blood, by mimicking innate immune recognition. Specifically, we have exploited the interaction of amphiphilic pathogen biomarkers such as lipopolysaccharides (LPS) from Gram-negative bacteria and lipoteichoic acids (LTA) from Gram-positive bacteria with host lipoprotein carriers in blood, in order to develop two tailored assays - lipoprotein capture and membrane insertion - for their direct detection. Our assays demonstrate a sensitivity of detection of 4 ng/mL for LPS and 2 ng/mL for LTA using a waveguide-based optical biosensor platform that was developed at LANL. In this manuscript, we also demonstrate the application of these methods for the detection of LPS in serum from pediatric patients with invasive Salmonella Typhimurium bacteremia (n = 7) and those with Staphylococcal bacteremia (n = 7) with 100% correlation with confirmatory culture. Taken together, these results demonstrate the significance of biochemistry in both our understanding of host-pathogen biology, and development of assay methodology, as well as demonstrate a potential new approach for the rapid, sensitive and accurate diagnosis of bacteremia at the point of need.


Assuntos
Bacteriemia/diagnóstico , Interações Hospedeiro-Patógeno , Lipopolissacarídeos/sangue , Programas de Rastreamento/métodos , Ácidos Teicoicos/sangue , Biomarcadores/sangue , Técnicas Biossensoriais/métodos , Criança , Comorbidade , Diagnóstico Precoce , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Imunidade Inata , Lipoproteínas/sangue , Pediatria/métodos
2.
PLoS One ; 13(6): e0198531, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29902192

RESUMO

Recognition of Pathogen-associated Molecular Patterns (PAMPs) by Toll-like receptors is central to innate immunity. Many bacterial PAMPs such as lipopolysaccharide (LPS) and lipoteichoic acid have amphiphilic properties. The hydrophobicity of amphiphilic PAMPs contributes to increasing entropy and causes these molecules to self-aggregate or bind host carrier proteins in aqueous physiological environments. The goal of this work was to determine how innate immune signaling is impacted by physical presentation and association of amphiphilic PAMPs with serum carrier proteins, using LPS as an example molecule. Specifically, we measured LPS-induced cytokine profiles in murine macrophages when the antigen was presented associated with the various serum carrier proteins in serum versus a serum-depleted system. Our study demonstrates that the observed cytokine profiles are dramatically different when LPS is presented in buffer, versus in serum when it is associated with proteins, specifically with respect to inhibition of pro-inflammatory cytokines in the latter. These studies suggest that LPS-mediated cytokine expression is dependent on its presentation in physiological systems. The amphiphilicity of bacterial PAMPs and consequent association with lipoproteins is a feature, which should be taken into account in the design of in vitro experiments. Further studies of the interdependencies of different serum carriers can identify pathways for drug delivery and diagnostics.


Assuntos
Proteínas de Transporte/metabolismo , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Animais , Apresentação de Antígeno , Bactérias/metabolismo , Proteínas de Transporte/química , Quimiocinas/metabolismo , Citocinas/metabolismo , Técnicas de Inativação de Genes , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Micelas , Células RAW 264.7 , Transdução de Sinais , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
3.
Biosensors (Basel) ; 7(3)2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677660

RESUMO

Rapid diagnosis is crucial to effectively treating any disease. Biological markers, or biomarkers, have been widely used to diagnose a variety of infectious and non-infectious diseases. The detection of biomarkers in patient samples can also provide valuable information regarding progression and prognosis. Interestingly, many such biomarkers are composed of lipids, and are amphiphilic in biochemistry, which leads them to be often sequestered by host carriers. Such sequestration enhances the difficulty of developing sensitive and accurate sensors for these targets. Many of the physiologically relevant molecules involved in pathogenesis and disease are indeed amphiphilic. This chemical property is likely essential for their biological function, but also makes them challenging to detect and quantify in vitro. In order to understand pathogenesis and disease progression while developing effective diagnostics, it is important to account for the biochemistry of lipid and amphiphilic biomarkers when creating novel techniques for the quantitative measurement of these targets. Here, we review techniques and methods used to detect lipid and amphiphilic biomarkers associated with disease, as well as their feasibility for use as diagnostic targets, highlighting the significance of their biochemical properties in the design and execution of laboratory and diagnostic strategies. The biochemistry of biological molecules is clearly relevant to their physiological function, and calling out the need for consideration of this feature in their study, and use as vaccine, diagnostic and therapeutic targets is the overarching motivation for this review.


Assuntos
Biomarcadores/análise , Técnicas Biossensoriais/métodos , Lipídeos/isolamento & purificação , Tensoativos/isolamento & purificação , Humanos , Metabolismo dos Lipídeos/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-27630828

RESUMO

Strains of Shiga toxin-producing Escherichia coli (STEC) are a serious threat to the health, with approximately half of the STEC related food-borne illnesses attributable to contaminated beef. We developed an assay that was able to screen samples for several important STEC associated serogroups (O26, O45, O103, O104, O111, O121, O145, O157) and three major virulence factors (eae, stx 1 , stx 2) in a rapid and multiplexed format using the Multiplex oligonucleotide ligation-PCR (MOL-PCR) assay chemistry. This assay detected unique STEC DNA signatures and is meant to be used on samples from various sources related to beef production, providing a multiplex and high-throughput complement to the multiplex PCR assays currently in use. Multiplex oligonucleotide ligation-PCR (MOL-PCR) is a nucleic acid-based assay chemistry that relies on flow cytometry/image cytometry and multiplex microsphere arrays for the detection of nucleic acid-based signatures present in target agents. The STEC MOL-PCR assay provided greater than 90% analytical specificity across all sequence markers designed when tested against panels of DNA samples that represent different STEC serogroups and toxin gene profiles. This paper describes the development of the 11-plex assay and the results of its validation. This highly multiplexed, but more importantly dynamic and adaptable screening assay allows inclusion of additional signatures as they are identified in relation to public health. As the impact of STEC associated illness on public health is explored additional information on classification will be needed on single samples; thus, this assay can serve as the backbone for a complex screening system.


Assuntos
Microbiologia de Alimentos/métodos , Programas de Rastreamento/métodos , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...