Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Planta ; 260(4): 79, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39182196

RESUMO

MAIN CONCLUSION: Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.


Assuntos
Ácido Abscísico , Arabidopsis , Microbacterium , Estresse Salino , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Ácido Abscísico/metabolismo , Microbacterium/genética , Microbacterium/fisiologia , Tolerância ao Sal/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
2.
Mol Plant Microbe Interact ; 32(9): 1162-1174, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30933667

RESUMO

Soil microbial communities hold great potential for sustainable and ecologically compatible agriculture. Although numerous plant-beneficial bacterial strains from a wide range of taxonomic groups have been reported, very little evidence is available on the plant-beneficial role of bacteria from the genus Caulobacter. Here, the mode of action of a Caulobacter strain, designated RHG1, which had originally been identified through a microbial screen for plant growth-promoting (PGP) bacteria in maize (Zea mays), is investigated in Arabidopsis thaliana. RHG1 colonized both roots and shoots of Arabidopsis, promoted lateral root formation in the root, and increased leaf number and leaf size in the shoot. The genome of RHG1 was sequenced and was utilized to look for PGP factors. Our data revealed that the bacterial production of nitric oxide, auxins, cytokinins, or 1-aminocyclopropane-1-carboxylate deaminase as PGP factors could be excluded. However, the analysis of brassinosteroid mutants suggests that an unknown PGP mechanism is involved that impinges directly or indirectly on the pathway of this growth hormone.


Assuntos
Caulobacter , Interações Hospedeiro-Patógeno , Zea mays , Caulobacter/genética , Raízes de Plantas/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA