Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114266, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38787724

RESUMO

Fragile X syndrome (FXS) is associated with disrupted cognition and sleep abnormalities. Sleep loss negatively impacts cognitive function, and one untested possibility is that disrupted cognition in FXS is exacerbated by abnormal sleep. We tested whether ML297, a hypnotic acting on G-protein-activated inward-rectifying potassium (GIRK) channels, could reverse sleep phenotypes and disrupted memory in Fmr1-/y mice. Fmr1-/y mice exhibit reduced non-rapid eye movement (NREM) sleep and fragmented NREM architecture, altered sleep electroencephalogram (EEG) oscillations, and reduced EEG coherence between cortical areas; these are partially reversed following ML297 administration. Treatment following contextual fear or spatial learning restores disrupted memory consolidation in Fmr1-/y mice. During memory recall, Fmr1-/y mice show an altered balance of activity among hippocampal principal neurons vs. parvalbumin-expressing interneurons; this is partially reversed by ML297. Because sleep disruption could impact neurophysiological phenotypes in FXS, augmenting sleep may improve disrupted cognition in this disorder.


Assuntos
Modelos Animais de Doenças , Eletroencefalografia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Transtornos da Memória , Sono , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/complicações , Transtornos da Memória/fisiopatologia , Transtornos da Memória/tratamento farmacológico , Camundongos , Sono/efeitos dos fármacos , Sono/fisiologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Masculino , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Camundongos Endogâmicos C57BL , Medo , Consolidação da Memória/efeitos dos fármacos
2.
bioRxiv ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37502832

RESUMO

Fragile X syndrome (FXS) is a highly-prevalent genetic cause of intellectual disability, associated with disrupted cognition and sleep abnormalities. Sleep loss itself negatively impacts cognitive function, yet the contribution of sleep loss to impaired cognition in FXS is vastly understudied. One untested possibility is that disrupted cognition in FXS is exacerbated by abnormal sleep. We hypothesized that restoration of sleep-dependent mechanisms could improve functions such as memory consolidation in FXS. We examined whether administration of ML297, a hypnotic drug acting on G-protein-activated inward-rectifying potassium channels, could restore sleep phenotypes and improve disrupted memory consolidation in Fmr1 -/y mice. Using 24-h polysomnographic recordings, we found that Fmr1 -/y mice exhibit reduced non-rapid eye movement (NREM) sleep and fragmented NREM sleep architecture, alterations in NREM EEG spectral power (including reductions in sleep spindles), and reduced EEG coherence between cortical areas. These alterations were reversed in the hours following ML297 administration. Hypnotic treatment following contextual fear or spatial learning also ameliorated disrupted memory consolidation in Fmr1 -/y mice. Hippocampal activation patterns during memory recall was altered in Fmr1 -/y mice, reflecting an altered balance of activity among principal neurons vs. parvalbumin-expressing (PV+) interneurons. This phenotype was partially reversed by post-learning ML297 administration. These studies suggest that sleep disruption could have a major impact on neurophysiological and behavioral phenotypes in FXS, and that hypnotic therapy may significantly improve disrupted cognition in this disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...