Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(2): 025105, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648095

RESUMO

We present a compact in situ electromagnet with an active cooling system for use in ultrahigh vacuum environments. The active cooling enhances the thermal stability and increases the electric current that can be applied through the coil, promoting the generation of homogeneous magnetic fields, required for applications in real-time deposition experiments. The electromagnet has been integrated into a reflectance difference magneto-optic Kerr effect (RD-MOKE) spectroscopy system that allows the synchronous measurement of the optical anisotropy and the magneto-optic response in polar MOKE geometry. Proof of principle studies have been performed in real time during the deposition of ultra-thin Ni films on Cu(110)-(2 × 1)O surfaces, corroborating the extremely sharp spin reorientation transition above a critical coverage of 9 monolayers and demonstrating the potential of the applied setup for real-time and in situ investigations of magnetic thin films and interfaces.

2.
Nanotechnology ; 27(33): 335601, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27378765

RESUMO

We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...