Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 35: 106752, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33553522

RESUMO

Evaluating candidates for novel materials with high nonlinear absorption properties for applications as biomarkers is a very important field of research. In this context, experimental and computational information on the two-photon absorption (TPA) properties of the dye IR780 is shown. The two-photon absorption data from 850 to 1000 nm for IR780 and other two well-known dyes, taken as reference, are presented. The experimental data were collected via an implementation of the two-photon induced fluorescence technique, while the quantum chemical data were produced by implementing DFT (Density-functional theory) methods. The data presented here supplement the paper "Two-photon absorption spectrum and characterization of the upper electronic states of dye IR780" by Guarin et al. (2021).

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119291, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360055

RESUMO

In this work, the full two-photon absorption (2PA) spectrum of cyanine dye IR780 in methanol was measured and some important properties of the upper excited electronic states were investigated. Specifically, two IR780 2PA bands of intensities nearing 140 and 2800 Goeppert-Mayer (GM) were found. In order to determine the optical properties of the upper electronic singlet states, a deconvolution of the absorption peaks in the UV region of the spectrum was made. Based on this, properties such as transition dipole moments, oscillator strengths, absorption maxima in the UV-vis spectra, S2-S1 vibrational couplings and predictions of the lifetime of the second excited state were calculated. Moreover, by combining experimental and computational results, the 2PA transitions were assigned to the upper excited states S2 and S4. Cross-section magnitudes, positions and shapes of the 2PA bands have been satisfactorily explained with a four-state model that comprises the singlet states S1, S2 and S4. From these results, the cyanine investigated in the present work could be used as a novel and interesting moiety for more complex systems that respond to two-photon excitation.

3.
Phys Chem Chem Phys ; 19(24): 15821-15832, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28585629

RESUMO

Electron mobility in superfluid helium is modeled between 0.1 and 2.2 K by a van der Waals-type thermodynamic equation of state, which relates the free volume of solvated electrons to temperature, density, and phase dependent internal pressure. The model is first calibrated against known electron mobility reference data along the saturated vapor pressure line and then validated to reproduce the existing mobility literature values as a function of pressure and temperature with at least 10% accuracy. Four different electron mobility regimes are identified: (1) Landau critical velocity limit (T ≈ 0), (2) mobility limited by thermal phonons (T < 0.6 K), (3) thermal phonon and discrete roton scattering ("roton gas") limited mobility (0.6 K < T < 1.2 K), and (4) the viscous liquid ("roton continuum") limit (T > 1.2 K) where the ion solvation structure directly determines the mobility. In the latter regime, the Stokes equation can be used to estimate the hydrodynamic radius of the solvated electron based on its mobility and fluid viscosity. To account for the non-continuum behavior appearing below 1.2 K, the temperature and density dependent Millikan-Cunningham factor is introduced. The hydrodynamic electron bubble radii predicted by the present model appear generally larger than the solvation cavity interface barycenter values obtained from density functional theory (DFT) calculations. Based on the classical Stokes law, this difference can arise from the variation of viscosity and flow characteristics around the electron. The calculated DFT liquid density profiles show distinct oscillations at the vacuum/liquid interface, which increase the interface rigidity.

4.
J Phys Chem Lett ; 7(22): 4666-4670, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27809539

RESUMO

Evidence for helium excimers (He2*) in the lowest allowed rotational quantum state in liquid helium is presented. He2* was generated by a corona discharge in the gas and normal liquid phases. Fluorescence spectra recorded in the visible region between 3.8 and 5.0 K and 0.2 and 5.6 bar showed the rotationally resolved d3Σu+ → b3Πg transition of He2*. Analysis of the pressure and temperature dependence of lineshifts and line intensities showed features of solvated He2* superimposed on its gas-phase spectrum and, in the liquid phase only, pressure-induced rotational cooling. These findings suggest that He2* can be used to investigate bulk helium in different phases at the nanoscale.

5.
J Phys Chem Lett ; 6(15): 3036-40, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26267199

RESUMO

Positively charged ions were produced in supercritical helium at temperatures from 6 to 10 K and up to 2 MPa using a corona discharge. Their mobility was measured via current-voltage curves, and the hydrodynamic radius was derived using Stokes law. An initial increase and subsequent decrease of hydrodynamic radius was observed and interpreted in terms of growth, compression and solidification of ion clusters. The mobility was modeled using a van der Waals-type thermodynamic state equation for the ion-in-helium mixed system and a temperature-dependent Millikan-Cunningham factor, describing experimental data both in the Knudsen and the Stokes flow region. Regions of maximum hydrodynamic radius and large compressibility were interpreted as boiling points. These points were modeled over a large range of pressures and found to match the Frenkel line of pure helium up to 0.7 MPa, reflecting similarity of density fluctuations in pure supercritical helium and gas-liquid phase transitions of ionic helium clusters.

6.
Phys Chem Chem Phys ; 17(28): 18535-40, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26110248

RESUMO

Positively charged helium clusters, also called 'snowballs', have been investigated within normal liquid helium. Thermodynamic state equations for ionic helium clusters in liquid helium have been developed, allowing us to discern the 'hydrodynamic' radius for a wide range of hydrostatic pressures and temperatures. The mobilities derived from the cluster sizes using stokes law match experimental data with unsurpassed accuracy. For low pressures the compressibility of the cluster ions was found to be distinctly larger than the compressibility of solid helium suggesting that in this pressure range clusters are fully or partially liquid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...