Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 22(1): 507-515, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32377714

RESUMO

During the progression of psoriatic lesions, abundant cellular infiltration of myeloid cells, such as macrophages and activated dendritic cells, occurs in the skin and the infiltrating cells interact with naive lymphoid cells to generate a T helper (Th)1 and Th17 environment. Therapies to treat psoriasis include phototherapy, non­steroidal and steroidal drugs, as well as antibodies to block tumor necrosis factor­α, interleukin (IL)­17­A and IL­12/IL­23, which all focus on decreasing the proinflammatory hallmark of psoriasis. The present study obtained the heptapeptide HP3 derived from phage display technology that blocks mononuclear cell adhesion to endothelial cells and inhibits trans­endothelial migration in vitro. The activity of the heptapeptide in a murine model of psoriasis was also assessed, which indicated that early administration inhibited the development of psoriatic lesions. Therefore, the results suggested that HP3 may serve as a potential therapeutic target for psoriasis.


Assuntos
Células Endoteliais/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Oligopeptídeos/uso terapêutico , Psoríase/tratamento farmacológico , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/patologia , Feminino , Humanos , Imiquimode , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Psoríase/induzido quimicamente , Psoríase/patologia
2.
J Sci Food Agric ; 100(10): 4049-4056, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32338377

RESUMO

BACKGROUND: Avocado is affected by Colletotrichum gloeosporioides causing anthracnose. Antagonistic microorganisms against C. gloeosporioides represent an alternative for biological control. Accordingly, in the present study, we focused on the isolation and characterization of potential antagonist bacteria against a member of the C. gloeosporioides species complex with respect to their possible future application. RESULTS: Samples of avocado rhizospheric soil were aquired from an orchard located in Ocuituco, Morelos, Mexico, aiming to obtain bacterial isolates with potential antifungal activity. From the soil samples, 136 bacteria were isolated and they were then challenged against a member of the C. gloeosporioides species complex; only three bacterial isolates A1, A2 and A3 significantly diminished mycelial fungal growth by 75%, 70% and 60%, respectively. Two of these isolates were identified by 16S rRNA as Bacillus mycoides (A1 and A2) and the third was identified as Bacillus tequilensis (A3). Bacillus mycoides bacterial cell-free supernatant reduced the mycelial growth of a member of the C. gloeosporioides species complex isolated from avocado by 65%, whereas Bacillus tequilensis A3 supernatant did so by 25% after 3 days post inoculation. Bacillus tequilensis mycoides A1 was a producer of proteases, indolacetic acid and siderophores. Preventive treatment using a cell-free supernatant of B. mycoides A1 diminished the severity of anthracnose disease (41.9%) on avocado fruit. CONCLUSION: These results reveal the possibility of using B. mycoides A1 as a potential biological control agent. © 2020 Society of Chemical Industry.


Assuntos
Antibiose , Bacillus/fisiologia , Colletotrichum/crescimento & desenvolvimento , Persea/microbiologia , Doenças das Plantas/microbiologia , Bacillus/genética , Bacillus/isolamento & purificação , Colletotrichum/fisiologia , México , Micélio/crescimento & desenvolvimento , Persea/crescimento & desenvolvimento , Sideróforos/metabolismo , Microbiologia do Solo
3.
J Agric Food Chem ; 67(33): 9241-9253, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31369258

RESUMO

Antiviral compounds targeting viral replicative processes have been studied as an alternative for the control of begomoviruses. Previously, we have reported that the peptide AmPep1 has strong affinity binding to the replication origin sequence of tomato yellow leaf curl virus (TYLCV). In this study, we describe the mechanism of action of this peptide as a novel alternative for control of plant-infecting DNA viruses. When AmPep1 was applied exogenously to tomato and Nicotiana benthamiana plants infected with TYLCV, a decrease in the synthesis of the two viral DNA strands (CS and VS) was observed, with a consequent delay in the development of disease progress in treated plants. The chemical mechanism of action of AmPep1 was deduced using Raman spectroscopy and molecular modeling showing the formation of chemical interactions such as H bonds and electrostatic interactions and the formation of π-π interactions between both biomolecules contributing to tampering with the viral replication.


Assuntos
Amaranthus/química , Antivirais/química , Antivirais/farmacologia , Begomovirus/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , RNA Viral/química , Replicação Viral/efeitos dos fármacos , Begomovirus/química , Begomovirus/genética , Begomovirus/fisiologia , Sequências Repetidas Invertidas/efeitos dos fármacos , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/química , RNA Viral/genética , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...