Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904987

RESUMO

Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila, including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analyzed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk and scRNA-seq datasets from larval brains in which Alk signaling was manipulated identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577, which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.


Assuntos
Quinase do Linfoma Anaplásico , Sistema Nervoso Central , Proteínas de Drosophila , Animais , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/genética , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Transdução de Sinais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Drosophila/genética , Drosophila/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica
2.
Dis Model Mech ; 15(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35972154

RESUMO

Activating anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK) mutations occur in pediatric neuroblastoma and are associated with poor prognosis. To study ALK-activating mutations in a genetically controllable system, we employed CRIPSR/Cas9, incorporating orthologs of the human oncogenic mutations ALKF1174L and ALKY1278S in the Drosophila Alk locus. AlkF1251L and AlkY1355S mutant Drosophila exhibited enhanced Alk signaling phenotypes, but unexpectedly depended on the Jelly belly (Jeb) ligand for activation. Both AlkF1251L and AlkY1355S mutant larval brains displayed hyperplasia, represented by increased numbers of Alk-positive neurons. Despite this hyperplasic phenotype, no brain tumors were observed in mutant animals. We showed that hyperplasia in Alk mutants was not caused by significantly increased rates of proliferation, but rather by decreased levels of apoptosis in the larval brain. Using single-cell RNA sequencing, we identified perturbations during temporal fate specification in AlkY1355S mutant mushroom body lineages. These findings shed light on the role of Alk in neurodevelopmental processes and highlight the potential of Alk-activating mutations to perturb specification and promote survival in neuronal lineages. This article has an associated First Person interview with the first author of the paper.


Assuntos
Quinase do Linfoma Anaplásico , Diferenciação Celular , Proteínas de Drosophila , Neurônios , Quinase do Linfoma Anaplásico/genética , Animais , Criança , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Humanos , Hiperplasia , Mutação , Neurônios/citologia , Receptores Proteína Tirosina Quinases/genética
3.
Nat Commun ; 13(1): 1240, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332138

RESUMO

Prime editing recently emerged as a next-generation approach for precise genome editing. Here we exploit DNA double-strand break (DSB) repair to develop two strategies that install precise genomic insertions using an SpCas9 nuclease-based prime editor (PEn). We first demonstrate that PEn coupled to a regular prime editing guide RNA (pegRNA) efficiently promotes short genomic insertions through a homology-dependent DSB repair mechanism. While PEn editing leads to increased levels of by-products, it can rescue pegRNAs that perform poorly with a nickase-based prime editor. We also present a small molecule approach that yields increased product purity of PEn editing. Next, we develop a homology-independent PEn editing strategy, which installs genomic insertions at DSBs through the non-homologous end joining pathway (NHEJ). Lastly, we show that PEn-mediated insertions at DSBs prevent Cas9-induced large chromosomal deletions and provide evidence that continuous Cas9-mediated cutting is one of the mechanisms by which Cas9-induced large deletions arise. Altogether, this work expands the current prime editing toolbox by leveraging distinct DNA repair mechanisms including NHEJ, which represents the primary pathway of DSB repair in mammalian cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Animais , Sistemas CRISPR-Cas , Reparo do DNA , Endonucleases/metabolismo , Edição de Genes , Mamíferos/genética
5.
Development ; 148(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905617

RESUMO

Development of the Drosophila visceral muscle depends on Anaplastic Lymphoma Kinase (Alk) receptor tyrosine kinase (RTK) signaling, which specifies founder cells (FCs) in the circular visceral mesoderm (VM). Although Alk activation by its ligand Jelly Belly (Jeb) is well characterized, few target molecules have been identified. Here, we used targeted DamID (TaDa) to identify Alk targets in embryos overexpressing Jeb versus embryos with abrogated Alk activity, revealing differentially expressed genes, including the Snail/Scratch family transcription factor Kahuli (Kah). We confirmed Kah mRNA and protein expression in the VM, and identified midgut constriction defects in Kah mutants similar to those of pointed (pnt). ChIP and RNA-Seq data analysis defined a Kah target-binding site similar to that of Snail, and identified a set of common target genes putatively regulated by Kah and Pnt during midgut constriction. Taken together, we report a rich dataset of Alk-responsive loci in the embryonic VM and functionally characterize the role of Kah in the regulation of embryonic midgut morphogenesis.


Assuntos
Quinase do Linfoma Anaplásico , Proteínas de Ligação a DNA , Proteínas de Drosophila , Desenvolvimento Embrionário , Proteínas do Tecido Nervoso , Proteínas Proto-Oncogênicas , Fatores de Transcrição , Animais , Quinase do Linfoma Anaplásico/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Desenvolvimento Muscular/genética , Músculos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , RNA-Seq , Transdução de Sinais/genética , Análise de Célula Única , Fatores de Transcrição/genética
6.
EMBO J ; 40(3): e105784, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411331

RESUMO

High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.


Assuntos
Citocinas/genética , Citocinas/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Regulação para Cima , Quinase do Linfoma Anaplásico/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Análise de Sequência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Rep ; 10(1): 14954, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917927

RESUMO

Anaplastic lymphoma kinase (Alk) is a receptor tyrosine kinase of the insulin receptor super-family that functions as oncogenic driver in a range of human cancers such as neuroblastoma. In order to investigate mechanisms underlying Alk oncogenic signaling, we conducted a genetic suppressor screen in Drosophila melanogaster. Our screen identified multiple loci important for Alk signaling, including members of Ras/Raf/ERK-, Pi3K-, and STAT-pathways as well as tailless (tll) and foxo whose orthologues NR2E1/TLX and FOXO3 are transcription factors implicated in human neuroblastoma. Many of the identified suppressors were also able to modulate signaling output from activated oncogenic variants of human ALK, suggesting that our screen identified targets likely relevant in a wide range of contexts. Interestingly, two misexpression alleles of wallenda (wnd, encoding a leucine zipper bearing kinase similar to human DLK and LZK) were among the strongest suppressors. We show that Alk expression leads to a growth advantage and induces cell death in surrounding cells. Our results suggest that Alk activity conveys a competitive advantage to cells, which can be reversed by over-expression of the JNK kinase kinase Wnd.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Proteínas de Drosophila/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Transdução de Sinais , Quinase do Linfoma Anaplásico/genética , Animais , Morte Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , MAP Quinase Quinase Quinases/genética
8.
APMIS ; 127(5): 288-302, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30803032

RESUMO

Over the last decade, anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase (RTK), has been identified as a fusion partner in a diverse variety of translocation events resulting in oncogenic signaling in many different cancer types. In tumors where the full-length ALK RTK itself is mutated, such as neuroblastoma, the picture regarding the role of ALK as an oncogenic driver is less clear. Neuroblastoma is a complex and heterogeneous tumor that arises from the neural crest derived peripheral nervous system. Although high-risk neuroblastoma is rare, it often relapses and becomes refractory to treatment. Thus, neuroblastoma accounts for 10-15% of all childhood cancer deaths. Since most cases are in children under the age of 2, understanding the role and regulation of ALK during neural crest development is an important goal in addressing neuroblastoma tumorigenesis. An impressive array of tyrosine kinase inhibitors (TKIs) that act to inhibit ALK have been FDA approved for use in ALK-driven cancers. ALK TKIs bind differently within the ATP-binding pocket of the ALK kinase domain and have been associated with different resistance mutations within ALK itself that arise in response to therapeutic use, particularly in ALK-fusion positive non-small cell lung cancer (NSCLC). This patient population has highlighted the importance of considering the relevant ALK TKI to be used for a given ALK mutant variant. In this review, we discuss ALK in neuroblastoma, as well as the use of ALK TKIs and other strategies to inhibit tumor growth. Current efforts combining novel approaches and increasing our understanding of the oncogenic role of ALK in neuroblastoma are aimed at improving the efficacy of ALK TKIs as precision medicine options in the clinic.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Quinase do Linfoma Anaplásico/genética , Neoplasias Encefálicas/genética , Fusão Gênica , Humanos , Terapia de Alvo Molecular , Neuroblastoma/genética , Mutação Puntual
9.
Proc Natl Acad Sci U S A ; 115(4): E630-E638, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29317532

RESUMO

Mutations in anaplastic lymphoma kinase (ALK) are implicated in somatic and familial neuroblastoma, a pediatric tumor of neural crest-derived tissues. Recently, biochemical analyses have identified secreted small ALKAL proteins (FAM150, AUG) as potential ligands for human ALK and the related leukocyte tyrosine kinase (LTK). In the zebrafish Danio rerio, DrLtk, which is similar to human ALK in sequence and domain structure, controls the development of iridophores, neural crest-derived pigment cells. Hence, the zebrafish system allows studying Alk/Ltk and Alkals involvement in neural crest regulation in vivo. Using zebrafish pigment pattern formation, Drosophila eye patterning, and cell culture-based assays, we show that zebrafish Alkals potently activate zebrafish Ltk and human ALK driving downstream signaling events. Overexpression of the three DrAlkals cause ectopic iridophore development, whereas loss-of-function alleles lead to spatially distinct patterns of iridophore loss in zebrafish larvae and adults. alkal loss-of-function triple mutants completely lack iridophores and are larval lethal as is the case for ltk null mutants. Our results provide in vivo evidence of (i) activation of ALK/LTK family receptors by ALKALs and (ii) an involvement of these ligand-receptor complexes in neural crest development.


Assuntos
Citocinas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Quinase do Linfoma Anaplásico , Animais , Linhagem Celular Tumoral , Drosophila , Olho/metabolismo , Humanos , Linfoma/enzimologia , Crista Neural/enzimologia , Células PC12 , Pigmentação , Ratos , Peixe-Zebra
10.
PLoS Genet ; 13(4): e1006617, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28369060

RESUMO

The Anaplastic Lymphoma Kinase (Alk) receptor tyrosine kinase (RTK) plays a critical role in the specification of founder cells (FCs) in the Drosophila visceral mesoderm (VM) during embryogenesis. Reporter gene and CRISPR/Cas9 deletion analysis reveals enhancer regions in and upstream of the Alk locus that influence tissue-specific expression in the amnioserosa (AS), the VM and the epidermis. By performing high throughput yeast one-hybrid screens (Y1H) with a library of Drosophila transcription factors (TFs) we identify Odd-paired (Opa), the Drosophila homologue of the vertebrate Zic family of TFs, as a novel regulator of embryonic Alk expression. Further characterization identifies evolutionarily conserved Opa-binding cis-regulatory motifs in one of the Alk associated enhancer elements. Employing Alk reporter lines as well as CRISPR/Cas9-mediated removal of regulatory elements in the Alk locus, we show modulation of Alk expression by Opa in the embryonic AS, epidermis and VM. In addition, we identify enhancer elements that integrate input from additional TFs, such as Binou (Bin) and Bagpipe (Bap), to regulate VM expression of Alk in a combinatorial manner. Taken together, our data show that the Opa zinc finger TF is a novel regulator of embryonic Alk expression.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Receptores Proteína Tirosina Quinases/genética , Fatores de Transcrição/genética , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Quinase do Linfoma Anaplásico , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Sistemas CRISPR-Cas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrião não Mamífero , Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/metabolismo , Regiões Promotoras Genéticas , Receptores Proteína Tirosina Quinases/metabolismo , Fatores de Transcrição/metabolismo
11.
Int J Food Sci Nutr ; 65(7): 862-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24846002

RESUMO

The objective of this study was to evaluate the effect of micronized insoluble fiber from starfruit bagasse as an ingredient of a functional food (FF) or as micronized insoluble fiber-rich fraction (IFRF) and its effects in vivo on lipids metabolism in a murine model. Experimental animals were divided in four isoproteic (15.8%) treatments differing on the fiber and cholesterol level used. The micronized IFRF particle size ranged from 37.5 to 149 µm. Treatments with added IFRF and those including the FF lowered serum triacylglycerols, total cholesterol (TC), high-density lipoproteins (HDL), and low-density lipoproteins (LDL) concentrations (IFRF: 14.2, 25.4, 55.06, and 12.18%, respectively; FF: 30.18, 39.47, 35.11, and 43.18%, respectively). IFRF produced the overall highest serum hypolipidemic effect and prevented the development of non-alcoholic fatty liver. Both the IFRF and the FF exhibited hypolipidemic effects that suggest a potential role of starfruit insoluble fiber as a component of FFs aimed against cardiovascular diseases.


Assuntos
Averrhoa/química , Fibras na Dieta/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Ração Animal , Animais , Dieta/veterinária , Fibras na Dieta/análise , Frutas/química , Camundongos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...