Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol Parasites Wildl ; 15: 132-142, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34026483

RESUMO

Reptile vector-borne diseases (RVBDs) of zoonotic concern are caused by bacteria, protozoa and viruses transmitted by arthropod vectors, which belong to the subclass Acarina (mites and ticks) and the order Diptera (mosquitoes, sand flies and tsetse flies). The phyletic age of reptiles since their origin in the late Carboniferous, has favored vectors and pathogens to co-evolve through millions of years, bridging to the present host-vector-pathogen interactions. The origin of vector-borne diseases is dated to the early cretaceous with Trypanosomatidae species in extinct sand flies, ancestral of modern protozoan hemoparasites of zoonotic concern (e.g., Leishmania and Trypanosoma) associated to reptiles. Bacterial RVBDs are represented by microorganisms also affecting mammals of the genera Aeromonas, Anaplasma, Borrelia, Coxiella, Ehrlichia and Rickettsia, most of them having reptilian clades. Finally, reptiles may play an important role as reservoirs of arborivuses, given the low host specificity of anthropophilic mosquitoes and sand flies. In this review, vector-borne pathogens of zoonotic concern from reptiles are discussed, as well as the interactions between reptiles, arthropod vectors and the zoonotic pathogens they may transmit.

2.
J Fish Dis ; 42(8): 1191-1200, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31184398

RESUMO

Francisella noatunensis subsp. orientalis is a pathogen of tilapia and other warm-water fish for which no vaccines are commercially available. In this study, a whole cell formalin-inactivated vaccine was developed for the first time using the highly virulent isolate STIR-GUS-F2f7 and the oil-based adjuvant Montanide™ ISA 763A VG. The efficacy of the vaccine was assessed in red Nile tilapia via intraperitoneal (i.p.) injection using homologous experimental infection and correlates of protection such as seral antibody production and bacterial loads in the spleen. For immunization, fish were i.p. injected with 0.1 ml of the vaccine, the adjuvant alone or PBS. At 840 degree days post-vaccination, all fish were i.p. injected with 4.0 × 103 CFU/fish of pathogenic bacteria. The RPS at the end of the trial was 100% in the vaccinated group with significantly higher survival than in the adjuvant and control groups. The RPS in the adjuvant group was 42%, and no significant difference was seen in survival between this and the PBS group. Moreover, significantly higher antibody titres in the serum and significantly lower bacterial loads in the spleen were detected in the vaccinated fish by ELISA and qPCR, respectively. These findings highlight the potential of autogenous vaccines for controlling francisellosis in tilapia.


Assuntos
Autovacinas/administração & dosagem , Ciclídeos , Francisella/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Vacinação/veterinária , Animais , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Injeções Intraperitoneais/veterinária , Vacinas de Produtos Inativados/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...