Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(26): 22567-22576, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811902

RESUMO

Non-intrusive means to detect concealed firearms based on magnetometry are widely accepted and employed worldwide. Explosive detection canines can also detect concealed firearms provided that they are imprinted on materials that may be related to firearms such as nitroglycerin in double-base smokeless powders. However, there are hundreds of possible smokeless powder formulations across various manufacturers, presenting a challenge for trained canines to generalize across all possible powder compositions. In response, this paper reports a set of potential imprinting vapor(s) that may help detection canines generalize across a variety of double-base smokeless powders and gunshot residues. Statistical analysis was conducted on the smokeless powder database maintained by the National Center for Forensic Science, and headspace measurements targeting nitroglycerin and diphenylamine were collected from several powders. In addition, measurements were taken to track nitroglycerin and diphenylamine vapor concentration changes over time on the spent casings and gun barrels of four types of ammunition. The observed vapor concentration mixing ratios for nitroglycerin and diphenylamine from residues were in the part-per-billion to part-per-trillion range, which would be challenging to detect for many field-deployed explosive vapor detectors and indicate continued importance of canines for forensic investigation and crime prevention. Analyses suggest four potential vapor compositions for imprinting. For unburnt powders, 90% nitroglycerin and 10% diphenylamine appear adequate for most powders, and 90% dinitrotoluene and 10% diphenylamine is a possible candidate to increase generalization to powders that contain dinitrotoluene instead of nitroglycerin. 100% nitroglycerin appears adequate for many gunshot residues (GSRs). Diphenylamine may be present in some GSRs, and equal compositions of nitroglycerin and diphenylamine may be adequate for imprinting against these residues as they age (this study tracked signatures up to 7 weeks after discharge).

2.
Anal Chem ; 89(12): 6482-6490, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28598144

RESUMO

Canines remain the gold standard for explosives detection in many situations, and there is an ongoing desire for them to perform at the highest level. This goal requires canine training to be approached similarly to scientific sensor design. Developing a canine training regimen is made challenging by a lack of understanding of the canine's odor environment, which is dynamic and typically contains multiple odorants. Existing methodology assumes that the handler's intention is an adequate surrogate for actual knowledge of the odors cuing the canine, but canines are easily exposed to unintentional explosive odors through training material cross-contamination. A sensitive, real-time (∼1 s) vapor analysis mass spectrometer was developed to provide tools, techniques, and knowledge to better understand, train, and utilize canines. The instrument has a detection library of nine explosives and explosive-related materials consisting of 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), 2,4,6-trinitrotoluene (TNT), nitroglycerin (NG), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), pentaerythritol tetranitrate (PETN), triacetone triperoxide (TATP), hexamethylene triperoxide diamine (HMTD), and cyclohexanone, with detection limits in the parts-per-trillion to parts-per-quadrillion range by volume. The instrument can illustrate aspects of vapor plume dynamics, such as detecting plume filaments at a distance. The instrument was deployed to support canine training in the field, detecting cross-contamination among training materials, and developing an evaluation method based on the odor environment. Support for training material production and handling was provided by studying the dynamic headspace of a nonexplosive HMTD training aid that is in development. These results supported existing canine training and identified certain areas that may be improved.


Assuntos
Contaminação de Medicamentos , Substâncias Explosivas/análise , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/análise , Cicloexanonas/análise , Dinitrobenzenos/análise , Cães , Compostos Heterocíclicos com 1 Anel/análise , Espectrometria de Massas , Nitroglicerina/análise , Tetranitrato de Pentaeritritol/análise , Peróxidos/análise , Triazinas/análise , Trinitrotolueno/análise , Volatilização
3.
J Phys Chem A ; 119(47): 11514-22, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26505487

RESUMO

A rapid method for vapor pressure measurement was developed and used to derive the vapor pressure curve of the thermally labile peroxide-based explosive hexamethylene triperoxide diamine (HMTD) over the temperature range from 28 to 80 °C. This method uses a controlled flow of vapor from a solid-phase HMTD source that is presented to an ambient-pressure-ionization mass spectrometer equipped with a secondary-electrospray-ionization (SESI) source. The subpart-per-trillion sensitivity of this system enables direct detection of HMTD vapor through an intact [M + H](+) ion in real time at temperatures near 20 °C. By calibrating this method using vapor sources of cocaine and heroin, which have known pressure-temperature (P-T) curves, the temperature dependence of HMTD vapor was determined, and a Clausius-Clapeyron plot of ln[P (Pa)] vs 1/[T (K)] yielded a straight line with the expression ln[P (Pa)] = {(-11091 ± 356) × 1/[T (K)]} + 25 ± 1 (error limits are the standard error of the regression analysis). From this equation, the sublimation enthalpy of HMTD was estimated to be 92 ± 3 kJ/mol, which compares well with the theoretical estimate of 95 kJ/mol, and the vapor pressure at 20 °C was estimated to be ∼60 parts per trillion by volume, which is within a factor of 2 of previous theoretical estimates. Thus, this method provides not only the first direct experimental determination of HMTD vapor pressure but also a rapid, near-real-time capability to quantitatively measure low-vapor-pressure compounds, which will be useful for aiding in the development of training aids for bomb-sniffing canines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...