Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(32): 12783-12792, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37526289

RESUMO

We report herein the synthesis and characterization of two unprecedented isomorphous spin-crossover two-dimensional coordination polymers of the Hofmann-type formulated {FeII(Hdpyan)2(µ2-[MII(CN)4])2}, with MII = Pd, Pt and Hdpyan is the in situ partially protonated form of 2,5-(dipyridin-4-yl)aniline (dpyan). The FeII is axially coordinated by the pyridine ring attached to the 2-position of the aniline ring, while it is equatorially surrounded by four [MII(CN)4]2- planar groups acting as trans µ2-bidentate ligands defining layers, which stack parallel to each other. The other pyridine group of Hdpyan, being protonated, remains peripheral but involved in a strong [MII-C≡N···Hpy+] hydrogen bond between alternate layers. This provokes a nearly 90° rotation of the plane defined by the [MII(CN)4]2- groups, with respect to the average plane defined by the layers, forcing the observed uncommon bridging mode and the accumulation of negative charge around each FeII, which is compensated by the axial [Hdpyan]+ ligands. According to the magnetic and calorimetric data, both compounds undergo a strong cooperative spin transition featuring a 10-12 K wide hysteresis loop centered at 220 (Pt) and 211 K (Pd) accompanied by large entropy variations, 97.4 (Pt) and 102.9 (Pd) J/K mol. The breaking symmetry involving almost 90° rotation of one of the two coordinated pyridines together with the large unit-cell volume change per FeII (ca. 50 Å3), and subsequent release of significantly short interlayer contacts upon the low-spin → high-spin event, accounts for the strong cooperativity.

2.
Inorg Chem ; 60(16): 11866-11877, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34347471

RESUMO

Controlled modulation of the spin-crossover (SCO) behavior through the sorption-desorption of invited molecules is an extensively exploited topic because of its potential applications in molecular sensing. For this purpose, understanding the mechanisms by which the spin-switching properties are altered by guest molecules is of paramount importance. Here, we show an experimental approach revealing a direct probe of how the interplay between SCO and host-guest chemistry is noticeably activated by chemically tuning the host structure. Thus, the axial ligand 4-phenylpyridine (4-PhPy) in the 2D Hofmann clathrates {Fe(4-PhPy)2[M(CN)4]} (PhPyM; M = Pt, Pd) is replaced by 2,4-bipyridine (2,4-Bipy), resulting in the isomorphous compounds {Fe(2,4-Bipy)2[M(CN)4]} (BipyM; M = Pt, Pd), which basically differ from the former in that they have a noncoordinated N heteroatom in the ancillary aromatic substituent, i.e., 2-pyridyl instead of phenyl. Our chemical, magnetic, calorimetric, and structural characterizations demonstrate that this subtle chemical composition change provokes outstanding modifications not only in the capability to adsorb small guests as water or methanol but also in the extent to which these guests affect the SCO characteristics.

3.
Inorg Chem ; 60(12): 9040-9049, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34047556

RESUMO

Aiming at investigating the suitability of Hofmann-type two-dimensional (2D) coordination polymers {FeII(Lax)2[MII(CN)4]} to be processed as single monolayers and probed as spin crossover (SCO) junctions in spintronic devices, the synthesis and characterization of the MII derivatives (MII = Pd and Pt) with sulfur-rich axial ligands (Lax = 4-methyl- and 4-ethyl-disulfanylpyridine) have been conducted. The thermal dependence of the magnetic and calorimetric properties confirmed the occurrence of strong cooperative SCO behavior in the temperature interval of 100-225 K, featuring hysteresis loops 44 and 32.5 K/21 K wide for PtII-methyl and PtII/PdII-ethyl derivatives, while the PdII-methyl derivative undergoes a much less cooperative multistep SCO. Excluding PtII-methyl, the remaining compounds display light-induced excited spin-state trapping at 10 K with TLIESST temperatures in the range of 50-70 K. Single-crystal studies performed in the temperature interval 100-250 K confirmed the layered structure and the occurrence of complete transformation between the high- and low-spin states of the FeII center for the four compounds. Strong positional disorder seems to be the source of elastic frustration driving the multistep SCO observed for the PdII-methyl derivative. It is expected that the peripheral disulfanyl groups will favor anchoring and growing of the monolayer on gold substrates and optimal electron transport in the device.

4.
ACS Appl Mater Interfaces ; 12(26): 29461-29472, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32496753

RESUMO

Integration of the ON-OFF cooperative spin crossover (SCO) properties of FeII coordination polymers as components of electronic and/or spintronic devices is currently an area of great interest for potential applications. This requires the selection and growth of thin films of the appropriate material onto selected substrates. In this context, two new series of cooperative SCO two-dimensional FeII coordination polymers of the Hofmann-type formulated {FeII(Pym)2[MII(CN)4]·xH2O}n and {FeII(Isoq)2[MII(CN)4]}n (Pym = pyrimidine, Isoq = isoquinoline; MII = Ni, Pd, Pt) have been synthesized, characterized, and the corresponding Pt derivatives selected for fabrication of thin films by liquid-phase epitaxy (LPE). At ambient pressure, variable-temperature single-crystal X-ray diffraction, magnetic, and calorimetric studies of the Pt and Pd microcrystalline materials of both series display strong cooperative thermal induced SCO properties. In contrast, this property is only observed for higher pressures in the Ni derivatives. The SCO behavior of the {FeII(L)2[PtII(CN)4]}n thin films (L = Pym, Isoq) were monitored by magnetization measurements in a SQUID magnetometer and compared with the homologous samples of the previously reported isostructural {FeII(Py)2[PtII(CN)4]}n (Py = pyridine). Application of the theory of regular solutions to the SCO of the three derivatives allowed us to evaluate the effect on the characteristic SCO temperatures and the hysteresis, as well as the associated thermodynamic parameters when moving from microcrystalline bulk solids to nanometric thin films.

5.
Chem Sci ; 10(13): 3807-3816, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31015922

RESUMO

A multistable spin crossover (SCO) molecular alloy system [Fe1-x M x (nBu-im)3(tren)](P1-y As y F6)2 (M = ZnII, NiII; (nBu-im)3(tren) = tris(n-butyl-imidazol(2-ethylamino))amine) has been synthesized and characterized. By controlling the composition of this isomorphous series, two cooperative thermally induced SCO events featuring distinct critical temperatures (T c) and hysteresis widths (ΔT c, memory) can be selected at will. The pristine derivative 100As (x = 0, y = 1) displays a strong cooperative two-step SCO and two reversible structural phase transitions (PTs). The low temperature PTLT and the SCO occur synchronously involving conformational changes of the ligand's n-butyl arms and two different arrangements of the AsF6 - anions [T1c = 174 K (ΔT1c = 17 K), T2c = 191 K (ΔT2c = 23 K) (scan rate 2 K min-1)]. The high-temperature PTHT takes place in the high-spin state domain and essentially involves rearrangement of the AsF6 - anions [TPTc = 275 K (ΔTPTc = 16 K)]. This behavior strongly contrasts with that of the homologous 100P [x = 0, y = 0] derivative where two separate cooperative one-step SCO can be selected by controlling the kinetics of the coupled PTLT at ambient pressure: (i) one at low temperatures, T c = 122 K (ΔT c = 9 K), for temperature scan rates (>1 K min-1) (memory channel A) where the structural modifications associated with PTLS are inhibited; (ii) the other centered at T c = 155 K (ΔT c = 41 K) for slower temperature scan rates ≤0.1 K min-1 (memory channel B). These two SCO regimes of the 100P derivative transform reversibly into the two-step SCO of 100As upon application of hydrostatic pressure (ca. 0.1 GPa) denoting the subtle effect of internal chemical pressure on the SCO behavior. Precise control of AsF6 - ↔ PF6 - substitution, and hence of the PTLT kinetics, selectively selects the memory channel B of 100P when x = 0 and y ≈ 0.7. Meanwhile, substitution of FeII with ZnII or NiII [x ≈ 0.2, y = 0] favors the low temperature memory channel A at any scan rate. This intriguing interplay between PT, SCO and isomorphous substitution was monitored by single crystal and powder X-ray diffractometries, and magnetic and calorimetric measurements.

6.
Chem Sci ; 9(44): 8446-8452, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30542594

RESUMO

The search for bifunctional materials showing synergies between spin crossover (SCO) and luminescence has attracted substantial interest since they could be promising platforms for new switching electronic and optical technologies. In this context, we present the first three-dimensional FeII Hofmann-type coordination polymer exhibiting SCO properties and luminescence. The complex {FeII(bpben)[Au(CN)2]}@pyr (bpben = 1,4-bis(4-pyridyl)benzene) functionalized with pyrene (pyr) guests undergoes a cooperative multi-step SCO, which has been investigated by single crystal X-ray diffraction, single crystal UV-Vis absorption spectroscopy, and magnetic and calorimetric measurements. The resulting fluorescence from pyrene and exciplex emissions are controlled by the thermal and light irradiation (LIESST effect) dependence of the high/low-spin state population of FeII. Conversely, the SCO can be tracked by monitoring the fluorescence emission. This ON-OFF interplay between SCO and luminescence combined with the amenability of Hofmann-type materials to be processed at the nano-scale may be relevant for the generation of SCO-based sensors, actuators and spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...