Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(683): eabj3289, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791209

RESUMO

Innate immunity not only shapes the way epithelial barriers interpret environmental cues but also drives adaptive responses. Therefore, modulators of innate immune responses are expected to have high therapeutic potential across immune-mediated inflammatory diseases. IRAK4 is a kinase that integrates signaling downstream of receptors acting at the interface between innate and adaptive immune responses, such as Toll-like receptors (TLRs), interleukin-1R (IL-1R), and IL-18R. Because effects of IRAK4 inhibition are stimulus, cell type, and species dependent, the evaluation of the therapeutic potential of IRAK4 inhibitors requires a highly translational approach. Here, we profiled a selective IRAK4 inhibitor, GLPG2534, in an extensive panel of models of inflammatory skin diseases, translationally expanding evidence from in vitro to in vivo and from mouse to human. In vitro, IRAK4 inhibition resulted in substantial inhibition of TLR and IL-1 responses in dendritic cells, keratinocytes, granulocytes, and T cells but only weakly affected dermal fibroblast responses. Furthermore, disease activity in murine models of skin inflammation (IL-23-, IL-33-, imiquimod-, and MC903-induced) was markedly dampened by IRAK4 inhibition. Last, inhibiting IRAK4 reversed pathogenic molecular signatures in human lesional psoriasis and atopic dermatitis biopsies. Over the variety of models used, IRAK4 inhibition consistently affected central mediators of psoriasis (IL-17A) and atopic dermatitis (IL-4 and IL-13). Overall, our data highlight IRAK4 as a central player in skin inflammatory processes and demonstrate the potential of IRAK4 inhibition as a therapeutic strategy in chronic inflammatory skin diseases.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Camundongos , Animais , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Dermatite Atópica/patologia , Transdução de Sinais , Receptores Toll-Like/uso terapêutico , Pele/patologia , Psoríase/tratamento farmacológico
2.
Front Pharmacol ; 13: 1012622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339591

RESUMO

New pharmacological approaches that target orexin receptors (OXRs) are being developed to treat sleep disorders such as insomnia and narcolepsy, with fewer side effects than existing treatments. Orexins are neuropeptides that exert excitatory effects on postsynaptic neurons via the OXRs, and are important in regulating sleep/wake states. To date, there are three FDA-approved dual orexin receptor antagonists for the treatment of insomnia, and several small molecule oral OX2R (OXR type 2) agonists are in the pipeline for addressing the orexin deficiency in narcolepsy. To find new hypnotics and psychostimulants, rodents have been the model of choice, but they are costly and have substantially different sleep patterns to humans. As an alternative model, zebrafish larvae that like humans are diurnal and show peak daytime activity and rest at night offer several potential advantages including the ability for high throughput screening. To pharmacologically validate the use of a zebrafish model in the discovery of new compounds, we aimed in this study to evaluate the functionality of a set of known small molecule OX2R agonists and antagonists on human and zebrafish OXRs and to probe their effects on the behavior of zebrafish larvae. To this end, we developed an in vitro IP-One Homogeneous Time Resolved Fluorescence (HTRF) immunoassay, and in vivo locomotor assays that record the locomotor activity of zebrafish larvae under physiological light conditions as well as under dark-light triggers. We demonstrate that the functional IP-One test is a good predictor of biological activity in vivo. Moreover, the behavioral data show that a high-throughput assay that records the locomotor activity of zebrafish throughout the evening, night and morning is able to distinguish between OXR agonists and antagonists active on the zebrafish OXR. Conversely, a locomotor assay with alternating 30 min dark-light transitions throughout the day is not able to distinguish between the two sets of compounds, indicating the importance of circadian rhythm to their pharmacological activity. Overall, the results show that a functional IP-one test in combination with a behavioral assay using zebrafish is well-suited as a discovery platform to find novel compounds that target OXRs for the treatment of sleep disorders.

3.
Front Mol Biosci ; 9: 863099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677880

RESUMO

The human genome encodes 850 G protein-coupled receptors (GPCRs), half of which are considered potential drug targets. GPCRs transduce extracellular stimuli into a plethora of vital physiological processes. Consequently, GPCRs are an attractive drug target class. This is underlined by the fact that approximately 40% of marketed drugs modulate GPCRs. Intriguingly 60% of non-olfactory GPCRs have no drugs or candidates in clinical development, highlighting the continued potential of GPCRs as drug targets. The discovery of small molecules targeting these GPCRs by conventional high throughput screening (HTS) campaigns is challenging. Although the definition of success varies per company, the success rate of HTS for GPCRs is low compared to other target families (Fujioka and Omori, 2012; Dragovich et al., 2022). Beyond this, GPCR structure determination can be difficult, which often precludes the application of structure-based drug design approaches to arising HTS hits. GPCR structural studies entail the resource-demanding purification of native receptors, which can be challenging as they are inherently unstable when extracted from the lipid matrix. Moreover, GPCRs are flexible molecules that adopt distinct conformations, some of which need to be stabilized if they are to be structurally resolved. The complexity of targeting distinct therapeutically relevant GPCR conformations during the early discovery stages contributes to the high attrition rates for GPCR drug discovery programs. Multiple strategies have been explored in an attempt to stabilize GPCRs in distinct conformations to better understand their pharmacology. This review will focus on the use of camelid-derived immunoglobulin single variable domains (VHHs) that stabilize disease-relevant pharmacological states (termed ConfoBodies by the authors) of GPCRs, as well as GPCR:signal transducer complexes, to accelerate drug discovery. These VHHs are powerful tools for supporting in vitro screening, deconvolution of complex GPCR pharmacology, and structural biology purposes. In order to demonstrate the potential impact of ConfoBodies on translational research, examples are presented of their role in active state screening campaigns and structure-informed rational design to identify de novo chemical space and, subsequently, how such matter can be elaborated into more potent and selective drug candidates with intended pharmacology.

4.
Trends Pharmacol Sci ; 43(5): 406-423, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34857409

RESUMO

Recent years have seen the rise of allosteric modulation as an innovative approach for drug design and discovery, efforts which culminated in the development of several clinical candidates. Allosteric modulation of many drug targets, including mainly membrane-embedded receptors, have been vastly explored through small molecule screening campaigns, but much less attention has been paid to peptide-based allosteric modulators. However, peptides have a significant impact on the pharmaceutical industry due to the typically higher potency and selectivity for their targets, as compared with small molecule therapeutics. Therefore, peptides represent one of the most promising classes of molecules that can modulate key biological pathways. Here, we report on the allosteric modulation of proteins (ranging from G protein-coupled receptors to specific protein-protein interactions) by peptides for applications in drug discovery.


Assuntos
Desenho de Fármacos , Receptores Acoplados a Proteínas G , Regulação Alostérica , Sítio Alostérico , Descoberta de Drogas , Humanos , Ligantes , Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
6.
J Med Chem ; 64(19): 14557-14586, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34581584

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease. Current treatments only slow down disease progression, making new therapeutic strategies compelling. Increasing evidence suggests that S1P2 antagonists could be effective agents against fibrotic diseases. Our compound collection was mined for molecules possessing substructure features associated with S1P2 activity. The weakly potent indole hit 6 evolved into a potent phthalazone series, bearing a carboxylic acid, with the aid of a homology model. Suboptimal pharmacokinetics of a benzimidazole subseries were improved by modifications targeting potential interactions with transporters, based on concepts deriving from the extended clearance classification system (ECCS). Scaffold hopping, as a part of a chemical enablement strategy, permitted the rapid exploration of the position adjacent to the carboxylic acid. Compound 38, with good pharmacokinetics and in vitro potency, was efficacious at 10 mg/kg BID in three different in vivo mouse models of fibrotic diseases in a therapeutic setting.


Assuntos
Ácidos Carboxílicos/farmacologia , Descoberta de Drogas , Fibrose Pulmonar Idiopática/tratamento farmacológico , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Ácidos Carboxílicos/administração & dosagem , Modelos Animais de Doenças , Humanos , Camundongos
7.
J Med Chem ; 64(9): 6037-6058, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33939425

RESUMO

Mounting evidence from the literature suggests that blocking S1P2 receptor (S1PR2) signaling could be effective for the treatment of idiopathic pulmonary fibrosis (IPF). However, only a few antagonists have been so far disclosed. A chemical enablement strategy led to the discovery of a pyridine series with good antagonist activity. A pyridazine series with improved lipophilic efficiency and with no CYP inhibition liability was identified by scaffold hopping. Further optimization led to the discovery of 40 (GLPG2938), a compound with exquisite potency on a phenotypic IL8 release assay, good pharmacokinetics, and good activity in a bleomycin-induced model of pulmonary fibrosis.


Assuntos
Desenho de Fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Piridazinas/química , Piridazinas/farmacologia , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Interleucina-8/metabolismo , Masculino , Camundongos , Piridazinas/farmacocinética , Piridazinas/uso terapêutico , Relação Estrutura-Atividade , Distribuição Tecidual
8.
Angew Chem Int Ed Engl ; 60(18): 10247-10254, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33596327

RESUMO

G protein-coupled receptors (GPCRs) represent an important group of membrane proteins that play a central role in modern medicine. Unfortunately, conformational promiscuity hampers full therapeutic exploitation of GPCRs, since the largest population of the receptor will adopt a basal conformation, which subsequently challenges screens for agonist drug discovery programs. Herein, we describe a set of peptidomimetics able to mimic the ability of G proteins in stabilizing the active state of the ß2 adrenergic receptor (ß2 AR) and the dopamine 1 receptor (D1R). During fragment-based screening efforts, these (un)constrained peptide analogues of the α5 helix in Gs proteins, were able to identify agonism pre-imprinted fragments for the examined GPCRs, and as such, they behave as a generic tool, enabling an engagement in agonist earmarked discovery programs.


Assuntos
Descoberta de Drogas , Proteínas de Ligação ao GTP/agonistas , Peptidomiméticos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Peptidomiméticos/síntese química , Peptidomiméticos/química , Receptores Acoplados a Proteínas G/metabolismo
9.
J Med Chem ; 64(1): 343-353, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33399458

RESUMO

Cystic fibrosis (CF) is a life-threatening recessive genetic disease caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR). With the discovery of Ivacaftor and Lumacaftor, it has been shown that administration of one or more small molecules can partially restore the CFTR function. Correctors are small molecules that enhance the amount of CFTR on the cell surface, while potentiators improve the gating function of the CFTR channel. Herein, we describe the discovery and optimization of a novel potentiator series. Scaffold hopping, focusing on retaining the different intramolecular contacts, was crucial in the whole discovery process to identify a novel series devoid of genotoxic liabilities. From this series, the clinical candidate GLPG2451 was selected based on its pharmacokinetic properties, allowing QD dosing and based on its low CYP induction potential.


Assuntos
Fibrose Cística/tratamento farmacológico , Descoberta de Drogas , Piridinas/farmacologia , Piridinas/uso terapêutico , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Piridinas/química , Piridinas/farmacocinética , Ratos
11.
Future Med Chem ; 7(2): 203-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25686006

RESUMO

The discovery of the JAK-STAT pathway was a landmark in cell biology. The identification of these pathways has changed the landscape of treatment of rheumatoid arthritis and other autoimmune diseases. The two first (unselective) JAK inhibitors have recently been approved by the US FDA for the treatment of myelofibrosis and rheumatoid arthritis and many other JAK inhibitors are currently in clinical development or at the discovery stage. Research groups have demonstrated the different roles of JAK member and the therapeutic potential of targeting them selectively. JAK1 plays a critical and potentially dominant role in the transduction of γc cytokine (γc = common γ chain) and in IL-6 signaling. In this review, we will discuss the state-of-the-art research that evokes JAK1 selective inhibition.


Assuntos
Janus Quinase 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Humanos , Janus Quinase 1/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
12.
J Med Chem ; 57(22): 9323-42, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25369270

RESUMO

Janus kinases (JAK1, JAK2, JAK3, and TYK2) are involved in the signaling of multiple cytokines important in cellular function. Blockade of the JAK-STAT pathway with a small molecule has been shown to provide therapeutic immunomodulation. Having identified JAK1 as a possible new target for arthritis at Galapagos, the compound library was screened against JAK1, resulting in the identification of a triazolopyridine-based series of inhibitors represented by 3. Optimization within this chemical series led to identification of GLPG0634 (65, filgotinib), a selective JAK1 inhibitor currently in phase 2B development for RA and phase 2A development for Crohn's disease (CD).


Assuntos
Química Farmacêutica/métodos , Janus Quinase 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Piridinas/química , Triazóis/química , Trifosfato de Adenosina/química , Animais , Artrite/tratamento farmacológico , Colágeno/química , Doença de Crohn/tratamento farmacológico , Cristalografia por Raios X , Citocinas/metabolismo , Dimerização , Modelos Animais de Doenças , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Cinética , Fosforilação , Ratos , Proteínas Recombinantes/química , Relação Estrutura-Atividade
13.
Pharm Pat Anal ; 3(4): 449-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25291316

RESUMO

The family of JAK comprises four members and has received significant attention in recent years from the pharmaceutical industry as a therapeutic target. The role of JAK is central to cytokine signaling pathways. It is believed that selective modulation of one specific JAK can lead to the inhibition of a restricted set of cytokines, which should avoid undesired side effects and get closer to the profile of biologic therapies. Consequently, selective JAK inhibition has become a major focus area of drug discovery research. A review of the TYK2 patents indicates that industry attention has recently turned toward the development of specific inhibitors. Importantly, despite the increasing number of published patents, none of these drugs have yet made it to the clinical trials.


Assuntos
Inflamação/tratamento farmacológico , Janus Quinases/metabolismo , Janus Quinases/fisiologia , Patentes como Assunto , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , TYK2 Quinase/antagonistas & inibidores , Ensaios Clínicos como Assunto , Janus Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas , Pirimidinas , TYK2 Quinase/fisiologia
14.
J Immunol ; 191(7): 3568-77, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24006460

RESUMO

The JAKs receive continued interest as therapeutic targets for autoimmune, inflammatory, and oncological diseases. JAKs play critical roles in the development and biology of the hematopoietic system, as evidenced by mouse and human genetics. JAK1 is critical for the signal transduction of many type I and type II inflammatory cytokine receptors. In a search for JAK small molecule inhibitors, GLPG0634 was identified as a lead compound belonging to a novel class of JAK inhibitors. It displayed a JAK1/JAK2 inhibitor profile in biochemical assays, but subsequent studies in cellular and whole blood assays revealed a selectivity of ∼30-fold for JAK1- over JAK2-dependent signaling. GLPG0634 dose-dependently inhibited Th1 and Th2 differentiation and to a lesser extent the differentiation of Th17 cells in vitro. GLPG0634 was well exposed in rodents upon oral dosing, and exposure levels correlated with repression of Mx2 expression in leukocytes. Oral dosing of GLPG0634 in a therapeutic set-up in a collagen-induced arthritis model in rodents resulted in a significant dose-dependent reduction of the disease progression. Paw swelling, bone and cartilage degradation, and levels of inflammatory cytokines were reduced by GLPG0634 treatment. Efficacy of GLPG0634 in the collagen-induced arthritis models was comparable to the results obtained with etanercept. In conclusion, the JAK1 selective inhibitor GLPG0634 is a promising novel therapeutic with potential for oral treatment of rheumatoid arthritis and possibly other immune-inflammatory diseases.


Assuntos
Inflamação/metabolismo , Janus Quinase 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Inativação Gênica , Humanos , Inflamação/tratamento farmacológico , Concentração Inibidora 50 , Interleucina-6/farmacologia , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Piridinas/administração & dosagem , Ratos , Fator de Transcrição STAT1/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Triazóis/administração & dosagem
15.
Prog Med Chem ; 52: 153-223, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23384668

RESUMO

In this review, we describe the current knowledge of the biology of the JAKs. The JAK family comprises the four nonreceptor tyrosine kinases JAK1, JAK2, JAK3, and Tyk2, all key players in the signal transduction from cytokine receptors to transcription factor activation. We also review the progresses made towards the optimization of JAK inhibitors and the importance of their selectivity profile. Indeed, the full array of many medicinal chemistry enabling tools (HTS, X-ray crystallography, scaffold morphing, etc.) has been deployed to successfully design molecules that discriminate among JAK family and other kinases. While the first JAK inhibitor was launched in 2011, this review also summarizes the status of several other small-molecule JAK inhibitors currently in development to treat arthritis, psoriasis, organ rejection, and multiple cancer types.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Janus Quinases/antagonistas & inibidores , Transtornos Mieloproliferativos/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Artrite Reumatoide/enzimologia , Humanos , Janus Quinases/metabolismo , Modelos Moleculares , Transtornos Mieloproliferativos/enzimologia , Inibidores de Proteínas Quinases/uso terapêutico
16.
Anticancer Agents Med Chem ; 13(5): 731-47, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23094911

RESUMO

With the advent of the Type II kinase inhibitor imatinib (Gleevec) for treatment against cancer, rational design of tailored molecules has brought a revolution in medicinal chemistry for treating tumours caused by kinase malfunctioning. Among different types of kinase inhibitors, the design of Type II inhibitors has been rationalized for maximizing the benefits and reducing drawbacks. Here we highlight the development made in Type II inhibitors, discussing the advantages and disadvantages of these types of molecules. Furthermore, we present the strategies for designing druggable molecules that either selectively inhibit target kinases or overcome drug resistance.


Assuntos
Antineoplásicos/uso terapêutico , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Antineoplásicos/química , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Humanos , Mesilato de Imatinib , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/classificação , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
17.
Curr Opin Drug Discov Devel ; 9(4): 425-44, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16889227

RESUMO

This article reviews the literature from January 2004 to January 2006 relating to the use of parallel chemistry compound libraries in drug discovery. Examples of libraries that have yielded active compounds across a range of biological targets are presented, together with synthetic details where relevant. The background of the biological target, and any structure-activity relationship that can be discerned from members of a library series, are also commented upon. A brief discussion of new technological developments in library design and synthesis, and likely future directions for parallel chemistry in the context of drug discovery, is also presented.


Assuntos
Química Farmacêutica/métodos , Preparações Farmacêuticas/química , Animais , Química Farmacêutica/tendências , Inibidores Enzimáticos/química , Humanos
18.
Bioorg Med Chem Lett ; 16(18): 4856-60, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16828551

RESUMO

A new family of mGlu receptor orthosteric ligands called APTCs was designed and synthesized using a parallel chemistry approach. Amongst 65 molecules tested on mGlu4, mGlu6 and mGlu8 subtypes, (2S,4S)-4-amino-1-[(E)-3-carboxyacryloyl]pyrrolidine-2,4-dicarboxylic acid (8a06-FP0429) has been shown to be a full mGlu4 agonist and a partial mGlu8 agonist. In addition, 8a06 was shown to be selective versus group I and II mGlu subtypes. A possible explanation for this efficacy difference is proposed by docking experiment performed with molecular model of the receptor.


Assuntos
Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Desenho de Fármacos , Pirrolidinas/química , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Aminação , Sítios de Ligação , Cálcio/metabolismo , Ácidos Carboxílicos/síntese química , Linhagem Celular , Humanos , Modelos Moleculares , Estrutura Molecular , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/classificação , Relação Estrutura-Atividade
19.
J Am Chem Soc ; 125(31): 9278-9, 2003 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12889941

RESUMO

Treatment of N-benzyl benzamides with a strong base (LDA or t-BuLi) followed by irradiation with a 500 W tungsten lamp provides, according to the substitution pattern of the starting amides, either norcaradienes or cycloheptadienones by overall insertion of the N-benzyl group into the benzamide's aromatic ring system. Chiral benzamides undergo the ring expansion with high (sometimes complete) stereospecificity. The reaction appears to occur via a series of pericyclic reactions (photochemical or thermal sigmatropic rearrangements and thermal electrocyclic reactions) following an initial dearomatizing cyclization.

20.
Chem Commun (Camb) ; (1): 38-9, 2002 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-12120299

RESUMO

Chiral lithium amides deprotonate N-benzyl benzamides enantioselectively, initiating an asymmetric dearomatising cyclisation to enantiomerically enriched isoindolinones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...