Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298988

RESUMO

Chagas disease (CD) is one of the main neglected tropical diseases that promote relevant socioeconomic impacts in several countries. The therapeutic options for the treatment of CD are limited, and parasite resistance has been reported. Piplartine is a phenylpropanoid imide that has diverse biological activities, including trypanocidal action. Thus, the objective of the present work was to prepare a collection of thirteen esters analogous to piplartine (1-13) and evaluate their trypanocidal activity against Trypanosoma cruzi. Of the tested analogues, compound 11 ((E)-furan-2-ylmethyl 3-(3,4,5-trimethoxyphenyl)acrylate) showed good activity with IC50 values = 28.21 ± 5.34 µM and 47.02 ± 8.70 µM, against the epimastigote and trypomastigote forms, respectively. In addition, it showed a high rate of selectivity to the parasite. The trypanocidal mechanism of action occurs through the induction of oxidative stress and mitochondrial damage. In addition, scanning electron microscopy showed the formation of pores and leakage of cytoplasmic content. Molecular docking indicated that 11 probably produces a trypanocidal effect through a multi-target mechanism, including affinity with proteins CRK1, MPK13, GSK3B, AKR, UCE-1, and UCE-2, which are important for the survival of the parasite. Therefore, the results suggest chemical characteristics that can serve for the development of new trypanocidal prototypes for researching drugs against Chagas disease.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/química , Simulação de Acoplamento Molecular , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Estresse Oxidativo
2.
Parasitol Res ; 121(7): 2141-2156, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35610523

RESUMO

Chagas disease (CD) is a neglected disease, prevalent and endemic in Latin America, but also present in Europe and North America. The main treatment used for this disease is benznidazole, but its efficacy is variable in the chronic phase and presents high toxicity. So, there is a need for the development of new therapeutic agents. The five-membered heterocyclic 1,2,4-oxadiazole ring has received attention for its unique properties and a broad spectrum of biological activities and is therefore a potential candidate for the development of new drugs. Thus, the aim of this study was to evaluate the activity of the N-cyclohexyl-3-(3-methylphenyl)-1,2,4-oxadiazol-5-amine (2) on the evolutionary forms of Trypanosoma cruzi strain Y, as well as its mechanisms of action and in silico theoretical approach. The results by computational method showed an interaction of the 1,2,4-oxadiazole (2) with TcGAPDH, cruzain, and trypanothione reductase, showing good charge distribution and affinity in those three targets. Furthermore, cytotoxicity in LLC-MK2 cells was performed by the MTT method. In the assays with different parasite forms, the tested compound showed similar time-dependent concentration effect. The evaluation of the antiamastigote effect between the two concentrations tested showed a reduction in the number of infected cells and also in the number of amastigotes per infected cell. By flow cytometry, the compound (2) displayed alterations suggestive of necrotic events. Finally, in scanning electron microscopy structural alterations were present, characteristic of necrosisin the epimastigote forms. Overall, the 1,2,4-oxadiazole derivative (2) here evaluated opens perspectives to the development of new antichagasic agents.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Humanos , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
3.
J Dairy Res ; : 1-4, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35184776

RESUMO

The experiments reported in this research communication analysed the presence of methicillin-resistant Staphylococcus aureus (MRSA) in 112 samples of 'coalho' cheese, from 56 dairy producing farms in 28 cities in all mesoregions of the State of Ceará, Brazil. To assess antimicrobial resistance we also examined the presence of genes encoding enterotoxins and toxic shock syndrome toxin, as well as the presence of the blaZ gene for ß-lactamases, and resistance to oxacillin. The research found 69 isolates of S. aureus, of which 13.04% had the mecA gene encoding the penicillin-binding protein, which confers resistance to methicillin, in cheese samples from 6 different cities. This included the state capital, Fortaleza, which had the largest prevalence (23.19%) of mecA positive isolates. It was also found that 55.07% of the isolates of S. aureus had the blaZ gene, and 7.25% demonstrated resistance to oxacillin in the plate disc diffusion tests. We did not show the presence of isolates carrying toxigenic genes. The findings suggest that strict supervision of production processes in the dairy industry is necessary in all production scale processes, thus preventing contamination and possible problems for consumers.

4.
J Biomol Struct Dyn ; 40(22): 12302-12315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34436980

RESUMO

Chagas disease infects approximately seven million people worldwide. Benznidazole is effective only in the acute phase of the disease, with an average cure rate of 80% between acute and recent cases. Therefore, there is an urgent need to find new bioactive substances that can be effective against parasites without causing so many complications to the host. In this study, the triterpene 3ß-6ß-16ß-trihydroxilup-20 (29)-ene (CLF-1) was isolated from Combretum leprosum, and its molecular structure was determined by NMR and infrared spectroscopy. The CLF-1 was also evaluated in vitro and in silico as potential trypanocidal agent against epimastigote and trypomastigote forms of Trypanosoma cruzi (Y strain). The CLF-1 demonstrated good results highlighted by lower IC50 (76.0 ± 8.72 µM, 75.1 ± 11.0 µM, and 70.3 ± 45.4 µM) for epimastigotes at 24, 48 and 72 h, and LC50 (71.6 ± 11.6 µM) for trypomastigotes forms. The molecular docking study shows that the CLF-1 was able to interact with important TcGAPDH residues, suggesting that this natural compound may preferentially exert its effect by compromising the glycolytic pathway in T. cruzi. The ADMET study together with the MTT results indicated that the CLF-1 is well-absorbed in the intestine and has low toxicity. Thus, this work adds new evidence that CLF-1 can potentially be used as a candidate for the development of new options for the treatment of Chagas disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Chagas , Combretum , Triterpenos , Tripanossomicidas , Trypanosoma cruzi , Humanos , Extratos Vegetais/química , Combretum/química , Triterpenos/farmacologia , Triterpenos/química , Simulação de Acoplamento Molecular , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia
5.
Heliyon ; 7(1): e06079, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553750

RESUMO

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, with approximately 6-7 million people infected worldwide, becoming a public health problem in tropical countries, thus generating an increasing demand for the development of more effective drugs, due to the low efficiency of the existing drugs. Aiming at the development of a new antichagasic pharmacological tool, the density functional theory was used to calculate the reactivity descriptors of amentoflavone, a biflavonoid with proven anti-trypanosomal activity in vitro, as well as to perform a study of interactions with the enzyme cruzain, an enzyme key in the evolutionary process of T-cruzi. Structural properties (in solvents with different values of dielectric constant), the infrared spectrum, the frontier orbitals, Fukui analysis, thermodynamic properties were the parameters calculated from DFT method with the monomeric structure of the apigenin used for comparison. Furthermore, molecular docking studies were performed to assess the potential use of this biflavonoid as a pharmacological antichagasic tool. The frontier orbitals (HOMO-LUMO) study to find the band gap of compound has been extended to calculate electron affinity, ionization energy, electronegativity electrophilicity index, chemical potential, global chemical hardness and global chemical softness to study the chemical behaviour of compound. The optimized structure was subjected to molecular Docking to characterize the interaction between amentoflavone and cruzain enzyme, a classic pharmacological target for substances with anti-gas activity, where significant interactions were observed with amino acid residues from each one's catalytic sites enzyme. These results suggest that amentoflavone has the potential to interfere with the enzymatic activity of cruzain, thus being an indicative of being a promising antichagasic agent.

6.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775321

RESUMO

Trypanosoma species are responsible for chronic and systemic infections in millions of people around the world, compromising life quality, and family and government budgets. This group of diseases is classified as neglected and causes thousands of deaths each year. In the present study, the trypanocidal effect of a set of 12 ester derivatives of the p-coumaric acid was tested. Of the test derivatives, pentyl p-coumarate (7) (5.16 ± 1.28 µM; 61.63 ± 28.59 µM) presented the best respective trypanocidal activities against both epimastigote and trypomastigote forms. Flow cytometry analysis revealed an increase in the percentage of 7-AAD labeled cells, an increase in reactive oxygen species, and a loss of mitochondrial membrane potential; indicating cell death by necrosis. This mechanism was confirmed by scanning electron microscopy, noting the loss of cellular integrity. Molecular docking data indicated that of the chemical compounds tested, compound 7 potentially acts through two mechanisms of action, whether by links with aldo-keto reductases (AKR) or by comprising cruzain (CZ) which is one of the key Trypanosoma cruzi development enzymes. The results indicate that for both enzymes, van der Waals interactions between ligand and receptors favor binding and hydrophobic interactions with the phenolic and aliphatic parts of the ligand. The study demonstrates that p-coumarate derivatives are promising molecules for developing new prototypes with antiprotozoal activity.


Assuntos
Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Ácidos Cumáricos/farmacologia , Propionatos/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomíase/tratamento farmacológico , Animais , Antioxidantes/química , Morte Celular , Células Cultivadas , Ácidos Cumáricos/química , Macaca mulatta , Potencial da Membrana Mitocondrial , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Tripanossomicidas/química , Tripanossomíase/parasitologia
7.
Diagn Microbiol Infect Dis ; 95(3): 114860, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31353066

RESUMO

Chagas disease is caused by Trypanosoma cruzi and affects about 7 million people worldwide. Benznidazole and nifurtimox have low efficacy and high toxicity. The present study was designed to identify the trypanocidal effect of (-)-α-Bisabolol (BIS) and investigate its mechanism. Epimastigotes and trypomastigotes were cultured with BIS and the viable cells were counted. BIS antiamastigote effect was evaluated using infected LLC-MK2 cells. MTT assay was performed to evaluate BIS cytotoxicity. Growth recovery was assessed to evaluate BIS effect after short times of exposure. BIS mechanism was investigated through flow cytometry, with 7-AAD and Annexin V-PE. DCFH-DA, rhodamine 123 (Rho123) and acridine orange (AO). Finally, enzymatic and computational assays were performed to identify BIS interaction with T. cruzi GAPDH (tcGAPDH). BIS showed an inhibitory effect on epimastigotes after all tested periods, as well on trypomastigotes. It caused cytotoxicity on LLC-MK2 cells at higher concentrations, with selectivity index (SeI) = 26.5. After treatment, infected cells showed a decrease in infected cells, the number of amastigotes per infected cell and the survival index (SuI). Growth recovery demonstrated that BIS effect causes rapid death of T. cruzi. Flow cytometry showed that BIS biological effect is associated with apoptosis induction, increase in cytoplasmic ROS and mitochondrial transmembrane potential, while reservosome swelling was observed at a late stage. Also, BIS action mechanism may be associated to tcGAPDH inhibition. Altogether, the results demonstrate that BIS causes cell death in Trypanosoma cruzi Y strain forms, with the involvement of apoptosis and oxidative stress and enzymatic inhibition.


Assuntos
Sesquiterpenos Monocíclicos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Concentração Inibidora 50 , Macaca mulatta , Simulação de Acoplamento Molecular , Estrutura Molecular , Sesquiterpenos Monocíclicos/química , Estresse Oxidativo/efeitos dos fármacos , Trypanosoma cruzi/fisiologia
8.
PLoS One ; 11(3): e0151029, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974665

RESUMO

Viperidae venom has several local and systemic effects, such as pain, edema, inflammation, kidney failure and coagulopathy. Additionally, bothropic venom and its isolated components directly interfere on cellular metabolism, causing alterations such as cell death and proliferation. Inflammatory cells are particularly involved in pathological envenomation mechanisms due to their capacity of releasing many mediators, such as nitric oxide (NO). NO has many effects on cell viability and it is associated to the development of inflammation and tissue damage caused by Bothrops and Bothropoides venom. Bothropoides insularis is a snake found only in Queimada Grande Island, which has markedly toxic venom. Thus, the aim of this work was to evaluate the biological effects of Bothropoides insularis venom (BiV) on RAW 264.7 cells and assess NO involvement. The venom was submitted to colorimetric assays to identify the presence of some enzymatic components. We observed that BiV induced H2O2 production and showed proteolytic and phospholipasic activities. RAW 264.7 murine macrophages were incubated with different concentrations of BiV and then cell viability was assessed by MTT reduction assay after 2, 6, 12 and 24 hours of incubation. A time- and concentration-dependent effect was observed, with a tendency to cell proliferation at lower BiV concentrations and cell death at higher concentrations. The cytotoxic effect was confirmed after lactate dehydrogenase (LDH) measurement in the supernatant from the experimental groups. Flow cytometry analyses revealed that necrosis is the main cell death pathway caused by BiV. Also, BiV induced NO release. The inhibition of both proliferative and cytotoxic effects with L-NAME were demonstrated, indicating that NO is important for these effects. Finally, BiV induced an increase in iNOS expression. Altogether, these results demonstrate that B. insularis venom have proliferative and cytotoxic effects on macrophages, with necrosis participation. We also suggest that BiV acts by inducing iNOS expression and causing NO release.


Assuntos
Venenos de Crotalídeos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico/biossíntese , Viperidae , Animais , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Fatores de Tempo
9.
Toxicon ; 108: 126-33, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410111

RESUMO

Snake envenomation (Bothrops genus) is common in tropical countries and acute kidney injury is one of the complications observed in Bothrops snakebite with relevant morbidity and mortality. Here, we showed that Bothropoides pauloensis venom (BpV) decreased cell viability (IC50 of 7.5 µg/mL). Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by apoptosis and late apoptosis, through caspases 3 and 7 activation, mitochondrial membrane potential collapse and ROS overproduction. BpV reduced perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate, percentage of sodium, chloride or potassium tubular transportation. These findings demonstrated that BpV cytotoxicity on renal epithelial cells might be responsible for the nephrotoxicity observed in isolated kidney.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Túbulos Renais/efeitos dos fármacos , Rim/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cães , Células Epiteliais/efeitos dos fármacos , Citometria de Fluxo , Taxa de Filtração Glomerular/efeitos dos fármacos , Técnicas In Vitro , Células Madin Darby de Rim Canino , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade , Resistência Vascular/efeitos dos fármacos
10.
Toxicon ; 88: 107-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24874890

RESUMO

Bothropoides insularis (jararaca-ilhoa) is a native endemic snake limited to the specific region of Queimada Island, on São Paulo coast. Several local and systemic effects have been described due to envenomation caused by it, such as edema, tissue necrosis, hemorrhage and acute renal failure. Our previous studies have shown that Bothropoides insularis venom (BinsV) demonstrated important functional and morphologic alterations in rat isolated kidney, especially decrease in tubular electrolyte transport, osmotic clearance and tubular necrosis. In order to elucidate the direct nephrotoxicity mechanism, the aim of the present study was to investigate BinsV cytotoxicity effect on renal epithelial cells. The treatment with BinsV over MDCK culture decreased cell viability in all concentrations tested with IC50 of 9 µg/mL. BinsV was able to induce membrane rupture and cell death with phosphatidilserine externalization. Furthermore, BinsV induced ROS overproduction and mitochondrial membrane potential collapse, as well as Bax translocation and caspases 3 and 7 expression. Therefore, these events might be responsible by BinsV-induced cell death caused by mitochondrial dysfunction and ROS overproduction in the direct cytotoxicity process.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Túbulos Renais/efeitos dos fármacos , Animais , Caspases/metabolismo , Cães , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Túbulos Renais/patologia , Células Madin Darby de Rim Canino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Necrose , Espécies Reativas de Oxigênio/metabolismo
11.
Nat Prod Commun ; 7(1): 71-4, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22428250

RESUMO

The therapeutic potential of toxins has aroused great interest in the scientific community. Microbial resistance is a serious current public health problem, in part because of the wide use of antimicrobial drugs. Furthermore, there are several problems in the treatment of parasitic diseases such as leishmaniosis and Chagas' disease, including the low efficacy in some clinical phases of the diseases and the loss of effectiveness of benzonidazole in the chronic phase of Chagas' disease. In this context, the aim of this work was to study the antimicrobial and antiparasitic effects of Bothropoides lutzi total venom (BltTV). The venom exerted an antibacterial effect on S. aureus, with MIC=MLC=200 microg/mL. The inhibitory effects of BltTV on promastigote forms of Leishmania amazonensis and L. chagasi were assessed by counting of viable cells after incubation with BltTV. IC50 values of 234.6 microg/mL and 61.2 microg/mL, were obtained, respectively. Furthermore, the venom repressed epimastigote forms of Trypanosoma cruzi growth. Finally, BltTV was verified to affect murine peritoneal macrophages, causing a cytotoxic effect at the highest concentrations (100 and 50 microg/mL). In conclusion, Bothropoides lutzi venom demonstrated antibacterial and antiparasite effects, suggesting that the venom contains some substance(s) of therapeutic value.


Assuntos
Antibacterianos/farmacologia , Antiprotozoários/farmacologia , Bothrops , Venenos de Crotalídeos/farmacologia , Animais , Feminino , Leishmania/efeitos dos fármacos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...