Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403346, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031875

RESUMO

Pyroelectric effect which refers to electrical responses induced by time temperature-dependent fluctuations has received extensive attention, showing promising application prospects for infrared (IR) technology. Although enhanced pyroelectric performances are obtained in potassium sodium niobate-based ceramics at room temperature via multi-symmetries coexistence design, the poor pyroelectric temperature stability is still an urging desire that needs to be resolved. Herin, by constructing multilayer composite ceramics and adjusting the proportion of stacked layers, improved pyroelectric coefficient, and figures of merit (FOMs), as well as enhanced temperature stabilities can be achieved. With a remained high pyroelectric coefficient of 5.45 × 10-4 C m-2°C-1 at room temperature, the pyroelectric parameters almost keep unchanged in the temperature range of 30-100 °C, showing great properties advantages compared with previous reports. The excellent properties can be attributed to the graded polarization rotation states among each lamination induced by successive phase transitions. The novel strategy for achieving stable pyroelectric sensing can further promote the application in the IR sensors field.

2.
ACS Appl Mater Interfaces ; 15(4): 5161-5171, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648156

RESUMO

Zn-ion batteries with low cost and high safety have been regarded as a promising energy storage technology for grid storage. It is well-known that the metal anode surface orientation is vital to its reversibility. Herein, we demonstrate a facile route to control the Zn metal anode surface orientation through electrodeposition with electrolyte additives. An ultrathin (101)-inclined Zn metal anode (down to 2 µm) is obtained by adding a small amount of dimethyl sulfoxide (DMSO) in the ZnSO4 aqueous electrolyte. Scanning electron microscopy indicates the formation of flat terrace-like surfaces, while in situ optical observations demonstrate the reversible plating and stripping. DFT calculations reveal that the large reconstruction of the Zn-(101) surface with DMSO and H2O adsorption to lower the interface energy is the main driving force for surface preference. Raman, XPS, and ToF-SIMS characterizations are performed to unveil the surface SEI components. Exceptional electrochemical performance is demonstrated for the (101)-inclined Zn metal anode in a half cell, which could cycle for 200 h with a low overpotential (<50 mV). The Zn||V2O full cells are assembled, showing much better cycle performance for the 5 µm (101)-inclined Zn metal anode as compared to the commercialized 10 µm Zn metal foil, with a maximum specific capacity of 359 mAh/g and >170 mAh/g after over 300 cycles. We hope this study will spur further interest in the control of surface crystallographic orientation for a stable ultrathin Zn metal anode.

3.
Nat Commun ; 13(1): 704, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121768

RESUMO

Single-crystalline nickel-rich cathodes are a rising candidate with great potential for high-energy lithium-ion batteries due to their superior structural and chemical robustness in comparison with polycrystalline counterparts. Within the single-crystalline cathode materials, the lattice strain and defects have significant impacts on the intercalation chemistry and, therefore, play a key role in determining the macroscopic electrochemical performance. Guided by our predictive theoretical model, we have systematically evaluated the effectiveness of regaining lost capacity by modulating the lattice deformation via an energy-efficient thermal treatment at different chemical states. We demonstrate that the lattice structure recoverability is highly dependent on both the cathode composition and the state of charge, providing clues to relieving the fatigued cathode crystal for sustainable lithium-ion batteries.

4.
Nanoscale ; 10(21): 10041-10049, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29774918

RESUMO

Inducing magnetism in a topological insulator (TI) by exchange coupling with a ferromagnetic insulator (FMI) will break the time-reversal symmetry of topological surface states, offering possibilities to realize several predicted novel magneto-electric effects. Seeking suitable FMI materials is crucial for the coupling of heterojunctions, and yet is challenging as well and only a few kinds have been explored. In this report, we introduce epitaxial LaCoO3 thin films on a SrTiO3 substrate, which is an insulating ferromagnet with a Curie temperature of TC ∼ 85 K, to be combined with TIs for proximity coupling. Thin films of the prototype topological insulator, Bi2Se3, are successfully grown onto the (001) surface of LaCoO3/SrTiO3, forming a high-quality TI/FMI heterostructure with a sharp interface. The magnetic and transport measurements manifest the emergence of a ferromagnetic phase in Bi2Se3 films, with additional induced moments and a suppressed weak antilocalization effect, while preserving the carrier mobility of the intrinsic Bi2Se3 films at the same time. Moreover, a signal of an anomalous Hall effect is observed and persists up to temperatures above 100 K, paving the way towards spintronic device applications.

5.
Proc Natl Acad Sci U S A ; 115(12): 2873-2877, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507211

RESUMO

Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high TC of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain-induced ferromagnetism which does not exist in bulk LaCoO3 The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes.

6.
Nanoscale ; 9(40): 15291-15297, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28980681

RESUMO

In recent years, much attention has been paid to layer-structured Bi4Bim-3Fem-3-xMxTi3O3m+3 (BFMTO, M = Co, Mn) compounds due to their potential as high temperature single phase multiferroic materials. However, BFMTO single crystals have been rarely reported in the past, though they are better candidates for studying the corresponding intrinsic multiferroics as well as the platform for making future devices, due to their structural complexity and difficulties in fabrication. In this article, Bi5Fe0.9Co0.1Ti3O15 single-crystalline nanoplates were synthesized by the hydrothermal method. The ferromagnetic domain structure of the nanoplate was investigated by electron holography. Denser phase contours were observed and the closed magnetic flux lines indicated a significant magnetic interaction between the neighboring nanoplates, which proved the ferromagnetic nature of the sample. Furthermore, M-H loops of the sample were also measured, in which the ferromagnetic Curie temperature reached ∼730.2 K. Besides, ferroelectric domains were also detected by using a piezoresponse force microscope. All the above-mentioned results indicate the first verification of the room temperature (RT) multiferroic behaviour in such single crystals, which will be useful for both future devices and understanding the underlining physics.

7.
ACS Appl Mater Interfaces ; 7(22): 12057-66, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25992951

RESUMO

Li3V2(PO4)3 (LVP) particles dispersed in different inorganic carbons (LVP@C) have been successfully synthesized via an in situ synthesis method. The inorganic carbon materials with different dimensions including zero-dimensional Super P (SP) nanospheres, one-dimensional carbon nanotubes (CNTs), two-dimensional graphene nanosheets, and three-dimensional graphite particles. The effects of carbon dimensions on the structure, morphology, and electrochemical performance of LVP@C composites have been systematically investigated. The carbon materials can maintain their original morphology even after oxidation (by NH4VO3) and high-temperature sintering (850 °C). LVP@CNT exhibits the best electrochemical performances among all of the samples. At an ultrahigh discharge rate of 100C, it presents a discharge capacity of 91.94 mAh g(-1) (69.13% of its theoretical capacity) and maintains 79.82% of its original capacity even after 382 cycles. Its excellent electrochemical performance makes LVP@CNT a promising cathode candidate for lithium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...