Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Sci Data ; 11(1): 741, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972874

RESUMO

Our study presents the assembly of a high-quality Taihu goose genome at the Telomere-to-Telomere (T2T) level. By employing advanced sequencing technologies, including Pacific Biosciences HiFi reads, Oxford Nanopore long reads, Illumina short reads, and chromatin conformation capture (Hi-C), we achieved an exceptional assembly. The T2T assembly encompasses a total length of 1,197,991,206 bp, with contigs N50 reaching 33,928,929 bp and scaffold N50 attaining 81,007,908 bp. It consists of 73 scaffolds, including 38 autosomes and one pair of Z/W sex chromosomes. Importantly, 33 autosomes were assembled without any gap, resulting in a contiguous representation. Furthermore, gene annotation efforts identified 34,898 genes, including 436,162 RNA transcripts, encompassing 806,158 exons, 743,910 introns, 651,148 coding sequences (CDS), and 135,622 untranslated regions (UTR). The T2T-level chromosome-scale goose genome assembly provides a vital foundation for future genetic improvement and understanding the genetic mechanisms underlying important traits in geese.


Assuntos
Gansos , Genoma , Telômero , Animais , Gansos/genética , Telômero/genética , Anotação de Sequência Molecular
2.
Artigo em Inglês | MEDLINE | ID: mdl-38906827

RESUMO

BACKGROUND: Elizabethkingia spp. are emerging as nosocomial pathogens causing various infections. These pathogens express resistance to a broad range of antibiotics, thus requiring antimicrobial combinations for coverage. However, possible antagonistic interactions between antibiotics have not been thoroughly explored. This study aimed to evaluate the effectiveness of antimicrobial combinations against Elizabethkingia infections, focusing on their impact on pathogenicity, including biofilm production and cell adhesion. METHODS: Double-disc diffusion, time-kill, and chequerboard assays were used for evaluating the combination effects of antibiotics against Elizabethkingia spp. We further examined the antagonistic effects of antibiotic combinations on biofilm formation and adherence to A549 human respiratory epithelial cells. Further validation of the antibiotic interactions and their implications was performed using ex vivo hamster precision-cut lung sections (PCLSs) to mimic in vivo conditions. RESULTS: Antagonistic effects were observed between cefoxitin, imipenem and amoxicillin/clavulanic acid in combination with vancomycin. The antagonism of imipenem toward vancomycin was specific to its effects on the genus Elizabethkingia. Imipenem further hampered the bactericidal effect of vancomycin and impaired its inhibition of biofilm formation and the adhesion of Elizabethkingia meningoseptica ATCC 13253 to human cells. In the ex vivo PCLS model, vancomycin exhibited dose-dependent bactericidal effects; however, the addition of imipenem also reduced the effect of vancomycin. CONCLUSIONS: Imipenem reduced the bactericidal efficacy of vancomycin against Elizabethkingia spp. and compromised its capacity to inhibit biofilm formation, thereby enhancing bacterial adhesion. Clinicians should be aware of the potential issues with the use of these antibiotic combinations when treating Elizabethkingia infections.

3.
Sci Total Environ ; 932: 172929, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703852

RESUMO

Firework (FW) events occur during various festivals worldwide and substantially negatively influence both air quality and human health. However, the effects of FWs on the chemical properties and formation of organic aerosols are far from clear. In this study, fine particulate matter (PM2.5) samples were collected in a suburban area in Qingdao, China during the Chinese Spring Festival. The concentrations of chemical species (especially carbonaceous components) in PM2.5 were measured using a combination of several state-of-the-art techniques. Our results showed that mass concentrations of water-soluble sulfate, potassium and chloride ions, and organic carbon drastically increased and became the predominant components in PM2.5 during FW events. Correspondingly, both the number and fractional contributions of sulfur (S)-containing subgroups (e.g., CHOS and CHONS compounds) and some chlorine (Cl)-containing organic (e.g., CHOSCl and CHONSCl) compounds identified using ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) increased. The S- and Cl-containing compounds unique to the FW display period were identified, and their chemical characterization, sources, and formation mechanisms were elucidated by combining FT-ICR MS and quantum chemical calculations. Our results suggest that FW emissions play notable roles in both primary and secondary organic aerosol formation, especially for CHOS- and Cl-containing organic compounds.

4.
Front Plant Sci ; 15: 1369330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576782

RESUMO

The plant pathogenic fungus Blumeria graminis f. sp. tritici infects wheat and reduces its yield. The policy of reducing fertilizer and biocide use in sustainable agriculture has prompted researchers to develop more green and efficient management strategies. In this study, a novel nanoprotective membrane (kaolin-nano titanium dioxide-liquid paraffin, referred to as KTP) that could effectively prevent powdery mildew of wheat was prepared by using 1 g/L kaolin, 2 g/L nanotitanium dioxide and 8% (v/v) liquid paraffin. The prevention and control effects of KTP spraying in advance in the pot and field experiments were 98.45% and 83.04%, respectively. More importantly, the weight of 1000 grains of wheat pretreated with KTP was 2.56 g higher than that of wheat infected with powdery mildew, significantly improving wheat yield. KTP delayed the germination of powdery mildew spores on the leaf surface, and inhibited the formation of mycelia. In addition, KTP did not affect the growth of wheat or the survival of earthworms. KTP nanoprotective membrane are a green and safe prevention and control materials that are which is expected to be widely used in agriculture to control wheat powdery mildew.

5.
Sci Data ; 11(1): 162, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307880

RESUMO

The Alectoris Chukar (chukar) is the most geographically widespread partridge species in the world, demonstrating exceptional adaptability to diverse ecological environments. However, the scarcity of genetic resources for chukar has hindered research into its adaptive evolution and molecular breeding. In this study, we have sequenced and assembled a high-quality, phased chukar genome that consists of 31 pairs of relatively complete diploid chromosomes. Our BUSCO analysis reported a high completeness score of 96.8% and 96.5%, with respect to universal single-copy orthologs and a low duplication rate (0.3% and 0.5%) for two assemblies. Through resequencing and population genomic analyses of six subspecies, we have curated invaluable genotype data that underscores the adaptive evolution of chukar in response to both arid and high-altitude environments. These data will significantly contribute to research on how chukars adaptively evolve to cope with desertification and alpine climates.


Assuntos
Galliformes , Genoma , Animais , Galliformes/genética , Genótipo
6.
Org Lett ; 26(7): 1364-1369, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38358273

RESUMO

The reaction of 4/5-carbonyl-cycloalkenone 1 or its achiral isomer 1' with organoboronic acid 2 in the presence of a chiral diene (S,S)-Fc-tfb-rhodium catalyst gave disubstituted trans-cycloalkanone 3 with high diastereo- and enantioselectivity. This highly efficient dynamic kinetic resolution is achieved by fast racemization of 1 through the formation of a dienolate followed by kinetic resolution with the chiral catalyst. The utility is demonstrated by the synthesis of key intermediates en route to (-)-cannabidiol.

7.
Nurse Educ Pract ; 75: 103882, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266566

RESUMO

AIM: This study aims to explore the influence of emotion regulation on empathic ability among undergraduate nursing students, as well as the mediating role of emotional intelligence and self-consistency congruence. DESIGN: A cross-sectional study was employed to examine the relationship between the emotion regulation and empathic ability in Chinese nursing students. METHODS: A total of 761 undergraduate nursing students were surveyed using the Interpersonal Reactivity Index (Chinese version), the Gross Emotion Regulation Questionnaire, Wang and Law's Emotional Intelligence Scale and the Self-Harmony Scale. RESULTS: There was a significant positive correlation between emotion regulation, empathic ability and self-harmony. Significant positive correlations were also found between emotion regulation, empathic ability and emotional intelligence. Mediation analysis revealed that self-harmony and emotional intelligence partially mediated the predictive relationship between emotion regulation and empathic ability, with self-harmony showing a more significant mediating effect. CONCLUSION: The findings suggest that emotion regulation among undergraduate nursing students indirectly influences their empathic ability through parallel mediating effects of self-harmony and emotional intelligence.


Assuntos
Bacharelado em Enfermagem , Regulação Emocional , Estudantes de Enfermagem , Humanos , Estudantes de Enfermagem/psicologia , Estudos Transversais , Inteligência Emocional
8.
Environ Pollut ; 344: 123368, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246217

RESUMO

Nitrophenols have received extensive attention due to their strong light-absorbing ability in the near-ultraviolet-visible region, which could be influenced by the atmospheric processes of nitrophenols. However, our knowledge and understanding of the formation and evolution of nitrophenols are still in the nascent stages. In the present study, the mixing states of four mononitrophenol particles (i.e., nitrophenol, methynitrophenol, nitrocatechol, and methoxynitrophenol), and one nitropolycyclic aromatic hydrocarbon particles (i.e., nitronaphthol (NN)) were investigated using a single-particle aerosol mass spectrometer (SPAMS) in November 2019 in Qingdao, China. The results showed, for the first time, that mononitrophenols and NN exhibit different mixing states and diurnal variations. Four mononitrophenols were internally mixed well with each other, and with organic acids, nitrates, potassium, and naphthalene. The diurnal variation in the number fraction of mononitrophenols presented two peaks at 07:00 to 09:00 and 18:00 to 20:00, and a valley at noon. Atmospheric environmental conditions, including NO2, O3, relative humidity, and temperature, can significantly influence the diurnal variation of mononitrophenols. Multiple linear regression and random forest regression models revealed that the main factors controlling the diurnal variation of mononitrophenols were photochemical reactions during the day and aqueous-phase reactions during the night. Unlike mononitrophenols, about 62-83% of NN were internally mixed with [NH4]+ and [H(NO3)2]-, but not with organic acids and potassium. The diurnal variation of NN was also different from that of mononitrophenols, generally increased from 17:00 to 10:00 and then rapidly decreaed from 11:00 to 16:00. These results imply that NN may have sources and atmospheric processes that are different from mononitrophenols. We speculate that this is mostly controlled by photochemical reactions and mixing with [NH4]+, which may influence the diurnal variation of NN in the ambient particles; however, this requires further confirmation. These findings extend our current understanding of the atmospheric formation and evolution of nitrophenols.


Assuntos
Poluentes Atmosféricos , Nitrofenóis , Potássio , Ritmo Circadiano , Antifúngicos , China , Poeira , Aerossóis , Monitoramento Ambiental , Material Particulado , Estações do Ano
9.
Toxicol Appl Pharmacol ; 483: 116839, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38290667

RESUMO

Actin filaments form unique structures with robust actin bundles and cytoskeletal networks affixed to the extracellular matrix and interact with neighboring cells, which are crucial structures for cancer cells to acquire a motile phenotype. This study aims to investigate a novel antitumor mechanism by which Tanshinone IIA (Tan IIA) modulates the morphology and migration of liver cancer cells via actin cytoskeleton regulation. 97H and Huh7 exhibited numerous tentacle-like protrusions that interacted with neighboring cells. Following treatment with Tan IIA, 97H and Huh7 showed a complete absence of cytoplasmic protrusion and adherens junctions, thereby effectively impeding their migration capability. The fluorescence staining of F-actin and microtubules indicated that these tentacle-like protrusions and cell-cell networks were actin-based structures that led to morphological changes after Tan IIA treatment by retracting and reorganizing beneath the membrane. Tan IIA can reverse the actin depolymerization and cell morphology alterations induced by latrunculin A. Tan IIA down-regulated actin and Rho GTPases expression significantly, as opposed to inducing Rho signaling activation. Preventing the activity of proteasomes and lysosomes had no discernible impact on the modifications in cellular structure and protein expression induced by Tan IIA. However, as demonstrated by the puromycin labeling technique, the newly synthesized proteins were significantly inhibited by Tan IIA. In conclusion, Tan IIA can induce dramatic actin cytoskeleton remodeling by inhibiting the protein synthesis of actin and Rho GTPases, resulting in the suppression of tumor growth and migration. Targeting the actin cytoskeleton of Tan IIA is a promising strategy for HCC treatment.


Assuntos
Abietanos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Actinas , Proteínas rho de Ligação ao GTP/farmacologia , Proliferação de Células , Carcinoma Hepatocelular/tratamento farmacológico , Citoesqueleto , Citoesqueleto de Actina , Linhagem Celular Tumoral , Apoptose
10.
Biochem Biophys Res Commun ; 690: 149256, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992525

RESUMO

14-3-3 proteins play important roles in plant metabolism and stress response. Tomato 14-3-3 proteins, SlTFT4 and SlTFT7, serve as hubs of plant immunity and are targeted by some pathogen effectors. Ralstonia solanacearum with more than 70 type Ⅲ effectors (T3Es) is one of the most destructive plant pathogens. However, little is known on whether R. solanacearum T3Es target SlTFT4 and SlTFT7 and hence interfere with plant immunity. We first detected the associations of SlTFT4/SlTFT7 with R. solanacearum T3Es by luciferase complementation assay, and then confirmed the interactions by yeast two-hybrid approach. We demonstrated that 22 Ralstonia T3Es were associated with both SlTFT4 and SlTFT7, and five among them suppressed the hypersensitive response induced by MAPKKKα, a protein kinase which associated with SlTFT4/SlTFT7. We further demonstrated that suppression of MAPKKKα-induced HR and plant basal defense by the T3E RipAC depend on its association with 14-3-3 proteins. Our findings firstly demonstrate that R. solanacearum T3Es can manipulate plant immunity by targeting 14-3-3 proteins, SlTFT4 and SlTFT7, providing new insights into plant-R. solanacearum interactions.


Assuntos
Proteínas 14-3-3 , Ralstonia solanacearum , Proteínas 14-3-3/metabolismo , Proteínas de Bactérias/metabolismo , Imunidade Vegetal , Ralstonia solanacearum/fisiologia , Doenças das Plantas , Proteínas de Plantas/metabolismo
11.
Heliyon ; 9(11): e22138, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045158

RESUMO

The incidence of zoonotic diseases, such as coronavirus disease 2019 and Ebola virus disease, is increasing worldwide. However, drug and vaccine development for zoonotic diseases has been hampered because the experiments involving live viruses are limited to high-containment laboratories. The Ebola virus minigenome system enables researchers to study the Ebola virus under BSL-2 conditions. Here, we found that the addition of the nucleocapsid protein of human coronaviruses, such as severe acute respiratory syndrome coronavirus 2, can increase the ratio of green fluorescent protein-positive cells by 1.5-2 folds in the Ebola virus minigenome system. Further analysis showed that the nucleocapsid protein acts as an activator of the Ebola virus minigenome system. Here, we developed an EBOV MiniG Plus system based on the Ebola virus minigenome system by adding the SARS-CoV-2 nucleocapsid protein. By evaluating the antiviral effect of remdesivir and rupintrivir, we demonstrated that compared to that of the traditional Ebola virus minigenome system, significant concentration-dependent activity was observed in the EBOV MiniG Plus system. Taken together, these results demonstrate the utility of adding nucleocapsid protein to the Ebola virus minigenome system to create a powerful platform for screening antiviral drugs against the Ebola virus.

12.
Huan Jing Ke Xue ; 44(12): 6551-6563, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098383

RESUMO

Ozone was one of the major pollutants affecting the environmental air quality in China. The accurate apportionment of key sources and their contributions of ambient ozone and its precursor VOCs played an important role in the effective prevention and control of ozone pollution. Therefore, this study utilized the photochemical-age-based parameterization method to estimate the initial concentrations of ambient VOCs data collected from January 1 to February 28, 2021 in Jiaozhou, Qingdao and corrected the photochemical losses of ambient VOC species. The positive matrix factorization(PMF) and ozone formation potential(OFP) models were used to conduct source apportionment of ambient VOCs and their OFPs so as to provide data support for the prevention and control of ozone pollution in Qingdao. The results showed that the average values of ambient ρ(TVOCs) and OFP in Qingdao during the study period were 65.9 µg·m-3 and 176.7 µg·m-3, respectively. Propane had the highest concentration(12.4 µg·m-3) and percentage(18.9%), whereas m/p-xylene had the highest OFP(24.6 µg·m-3) and percentage(13.9%). The mean initial concentration of TVOCs during the study was 153.1 µg·m-3, and its photochemical loss rate reached 63.8%. Alkenes were the VOC species with the highest photochemical loss rate(92.1%), and the photochemical loss rate of isoprene reached 98.6%, which was substantially higher than that of other VOC species. According to the source apportionment results of initial concentrations(IC-PMF), liquefied petroleum gas(24.2%), solvent use(17.8%), natural gas and petrochemical-related enterprises(16.6%), gasoline volatilization(13.2%), combustion and gasoline vehicle emissions(12.2%), biogenic emissions(8.6%), and diesel vehicle emissions(7.4%) were the main contributing sources of the ambient VOCs in Jiaozhou. Compared with the apportioned results of IC-PMF, the contribution of biogenic emissions was underestimated by 38.9% in the apportioned results based on observed concentrations(OC-PMF), and the contribution of natural gas and petrochemical-related enterprises was underestimated by 28.5%, and the underestimations of their contributions were substantially higher than those of other sources. Compared with that before the Spring Festival, the contribution of gasoline volatilization to ambient VOCs increased markedly during the Spring Festival, whereas the contributions of solvent use, combustion, and gasoline vehicle emissions to ambient VOCs increased most significantly after the Spring Festival. The main contributing sources of ambient ozone during the study period were solvent use(31.3%), natural gas and petrochemical-related enterprises(16.1%), biogenic emissions(14.5%), and combustion and gasoline vehicle emissions(13.2%). The primary contributors of ambient ozone in different Spring Festival periods showed substantial differences. Before the Spring Festival, solvent use had the highest contribution(71.1 µg·m-3), and gasoline volatilization was the highest contributor during the Spring Festival(34.4 µg·m-3), whereas biogenic emissions after the Spring Festival were the highest contributor(39.1 µg·m-3).

13.
Sci Rep ; 13(1): 18941, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919379

RESUMO

Aiming at the mismatch between the cutter combination of the furrowing device and the operating parameters, and resulting in low quality of furrowing and other problems, the theoretical analysis of the furrowing cutting operation is carried out and the influence law of the furrowing parameters on the trajectory, performance and quality of the furrowing movement is obtained. The influence of trenching parameters on trenching trajectory, performance and quality was obtained. The response surface method was applied to design and carry out field experiments. With the increase of cutter head speed and forward speed, the width and depth of trenching and the thickness of floating soil at the bottom of trenching decreased first and then increased, while the operation power consumption presented the increasing trend gradually. The optimization model of trenching performance quality was constructed to obtain the optimal parameter combination of influencing factors. Field experiments were carried out to verify the optimization results. The optimisation results were verified through field tests, which showed that the average depth of furrowing was 472 mm, the width was 332 mm, the thickness of soil return was 134 mm, and the operating power consumption was 19.95 kW. The results showed that the average depth of furrowing was 472 mm, the width was 332 mm, and the thickness of soil return was 134 mm. The optimization model could meet the operation quality indexes, and provide a theoretical basis for the design of the disc subsection cutting trenching device to select the operation parameter combination required by low power consumption and deep trenching.

14.
Genomics ; 115(6): 110726, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832857

RESUMO

Simple sequence repeats (SSRs) have been widely used for parentage testing, marker-assisted selection, and evolutionary studies. The insufficient availability of SSR markers in Bactrian camels partially accounts for the lack of systematic breeding. Therefore, we aimed to establish a comprehensive SSR dataset for the Bactrian camel. Our approach involved genome searching to locate every SSR in the genome, SSR-enriched sequencing to acquire polymorphism information, and literature research to collect published data. The resulting dataset contains 213,711 SSRs and details their characteristics, including genome coordinates, motifs, lengths, annotations, PCR primers, and polymorphism information. The dataset reveals a biased distribution of SSRs in the Bactrian camel genome, reflecting the mutation mechanism and complex evolution of SSRs. In practice, we successfully demonstrated the utility of the dataset through parentage testing using 15 randomly selected SSRs. This comprehensive dataset can facilitate systematic breeding and enable QTL mapping and GWAS of the Bactrian camel.


Assuntos
Camelus , Genoma de Planta , Animais , Camelus/genética , Marcadores Genéticos , Polimorfismo Genético , Repetições de Microssatélites
15.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834055

RESUMO

Despite the notable progress made in recent years, the understanding of the genetic control of gonadal sex differentiation and asymmetrical ovariogenesis in chicken during embryonic development remains incomplete. This study aimed to identify potential key genes and speculate about the mechanisms associated with ovary and testis development via an analysis of the results of PacBio and Illumina transcriptome sequencing of embryonic chicken gonads at the initiation of sexual differentiation (E4.5, E5.5, and E6.5). PacBio sequencing detected 328 and 233 significantly up-regulated transcript isoforms in females and males at E4.5, respectively. Illumina sequencing detected 95, 296 and 445 DEGs at E4.5, E5.5, and E6.5, respectively. Moreover, both sexes showed asymmetrical expression in gonads, and more DEGs were detected on the left side. There were 12 DEGs involved in cell proliferation shared between males and females in the left gonads. GO analysis suggested that coagulation pathways may be involved in the degradation of the right gonad in females and that blood oxygen transport pathways may be involved in preventing the degradation of the right gonad in males. These results provide a comprehensive expression profile of chicken embryo gonads at the initiation of sexual differentiation, which can serve as a theoretical basis for further understanding the mechanism of bird sex determination and its evolutionary process.


Assuntos
Galinhas , Testículo , Feminino , Masculino , Animais , Embrião de Galinha , Galinhas/genética , Testículo/metabolismo , Gônadas/metabolismo , Ovário/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento
16.
Angew Chem Int Ed Engl ; 62(43): e202310158, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37668526

RESUMO

Despite metal-based photosensitizers showing great potential in photodynamic therapy for tumor treatment, the application of the photosensitizers is intrinsically limited by their poor cancer-targeting properties. Herein, we reported a metal-based photosensitizer-bacteria hybrid, Ir-HEcN, via covalent labeling of an iridium(III) photosensitizer to the surface of genetically engineered bacteria. Due to its intrinsic self-propelled motility and hypoxia tropism, Ir-HEcN selectively targets and penetrates deeply into tumor tissues. Importantly, Ir-HEcN is capable of inducing pyroptosis and immunogenic cell death of tumor cells under irradiation, thereby remarkably evoking anti-tumor innate and adaptive immune responses in vivo and leading to the regression of solid tumors via combinational photodynamic therapy and immunotherapy. To the best of our knowledge, Ir-HEcN is the first metal complex decorated bacteria for enhanced photodynamic immunotherapy.

17.
ACS Omega ; 8(36): 32615-32622, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720745

RESUMO

Due to the influence of multiple factors on the conductive properties of rocks, the Archie's formula, considering only a single factor, makes it difficult to reasonably explain rock-electric characteristics of cracked porous rocks. In order to better describe the conductive mechanism of cracked porous rocks, a generalized multifactor conductivity model was proposed by considering and introducing multiple influencing factors such as the series-parallel structure, conductive matrix, cracks, and fluids, which is conducive to more accurate research on the conductive mechanism of rocks. It should be noted that the developed model is not only applicable to cracked porous rocks but also useful for porous rocks. Through the study and analysis of various influencing factors, it is demonstrated by the simulation results that both the conductive matrix and cracks improve the conductive ability, which are crucial factors resulting in the non-Archie behavior and low-resistivity pay zone, and rock conductivity is more sensitive to the conductive matrix and cracks in tight reservoirs with porosity below 10%. Furthermore, experimental data are available to validate the novel multifactor conductivity model, and the comparison results show its advantages in predicting and explaining the conductive properties of cracked porous rocks.

18.
J Hazard Mater ; 459: 132138, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531767

RESUMO

Conventional source apportionments of ambient volatile organic compounds (VOCs) have been based on observed and initial concentrations after photochemical correction. However, these results have not been related to ozone (O3) and secondary organic aerosol (SOA) formation. Thus, the apportioned contributions could not effectively support secondary pollution control development. Source apportionment of the VOCs consumed in forming O3 and SOA is needed. A consumed VOC source apportionment approach was developed and applied to hourly speciated VOCs data from June to August 2022 measured in Laoshan, Qingdao. Biogenic emissions (56.3%), vehicle emissions (17.2%), and gasoline evaporation (9.37%) were the main sources of consumed VOCs. High consumed VOCs from biogenic emissions mainly occurred during transport from parks to the southwest and northwest of study site. During the O3 pollution period, biogenic emissions (46.3%), vehicle emissions (24.2%), and gasoline evaporation (14.3%) provided the largest contributions to the consumed VOCs. However, biogenic emissions contribution increased to 57.1% during the non-O3 pollution period, and vehicle emissions and gasoline evaporation decreased to 16.5% and 9.01%, respectively. Biogenic emissions and the mixed source of combustion sources and solvent use contributed the most to O3 and SOA formation potentials during the O3 pollution period, respectively.

19.
Sci Total Environ ; 897: 165455, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442477

RESUMO

In the process of developing hot dry rock (HDR) through enhanced geothermal systems (EGS), it is necessary to inject circulating water to complete thermal energy extraction. However, the injected water will react with the high-temperature rock and produce mineral dissolution, which can destroy the artificial reservoir and affect the development of geothermal energy. To explore the influence of temperature on the solution composition and mineral dissolution after water-rock reaction, this study conducted water-rock interaction experiments on gabbro and granite at different heat treatment temperatures. Subsequently, the changes of solution composition and mineral dissolution with temperature after the reaction were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and XRD. The results demonstrated that Si, Na, Ca, K, Al, and Mg did not enter the aqueous solution at the same dissolution rate. Si was the primary solute in the solution, mainly resulting from the dissolution of quartz, and the dissolution rates of metallic elements were lower. In the granite-water interaction system, metallic elements such as Na, K, Ca, and Al showed a tendency to enter the solution at low temperatures, i.e., 150-180 °C, and the dissolution rate of Si reached its peak when the water was close to the supercritical state. With the increase in temperature, the dissolution rates of Si and metallic elements showed an initial increasing trend followed by a decrease. When water is in the subcritical to the supercritical state, abrupt fluctuations in the physical properties of water can strongly affect the dissolution of minerals or rocks. The results of this study provide insights into rock corrosion fatigue and mineral scaling in EGS water environment.

20.
Sci Total Environ ; 896: 165182, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37385502

RESUMO

Ambient volatile organic compounds (VOCs) concentrations are affected by emissions, dispersion, and chemistry. This work developed an initial concentration-dispersion normalized PMF (ICDN-PMF) to reflect the changes in source emissions. The effects of photochemical losses for VOC species were corrected by estimating the initial data, and then applying dispersion normalization to reduce the impacts of atmospheric dispersion. Hourly speciated VOC data measured in Qingdao from March to May 2020 were utilized to test the method and had assessed its effectiveness. Underestimated solvent use and biogenic emissions contributions due to photochemical losses during the O3 pollution (OP) period reached 4.4 and 3.8 times the non-O3 pollution (NOP) period values, respectively. Increased solvent use contribution due to air dispersion during the OP period was 4.6 times the change in the NOP period. The influence of chemical conversion and air dispersion on the gasoline and diesel vehicle emissions was not apparent during either period. The ICDN-PMF results suggested that biogenic emissions (23.1 %), solvent use (23.0 %), motor-vehicle emissions (17.1 %), and natural gas and diesel evaporation (15.8 %) contributed most to ambient VOCs during the OP period. Biogenic emissions and solvent use contributions during the OP period increased by 187 % and 135 % compared with the NOP period, respectively, whereas that of liquefied petroleum gas substantially decreased during the OP period. Controlling solvent use and motor-vehicles could be effective in controlling VOCs in the OP period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...