Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 2): 156059, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35598672

RESUMO

Freshwater lakes are recognized as potential sources of greenhouse gases (GHGs) that contribute to global warming. However, the spatiotemporal patterns of GHG emissions have not been adequately quantified in large deep lakes, resulting in substantial uncertainties in the estimated GHG budgets in global lakes. In this study, the spatial and seasonal variability of diffusive GHG (CO2, CH4, and N2O) emissions from Lake Fuxian located on a plateau in Southwestern China were quantified. The results showed that the surface lake water was oversaturated with dissolved GHG concentrations, and the average concentrations were 24.25 µM CO2, 0.044 µM CH4, and 14.28 nM N2O, with diffusive emission rates of 8.82 mmol CO2 m-2 d-1, 31.94 µmol CH4 m-2 d-1, and 4.94 µmol N2O m-2 d-1, respectively. Diffusive CH4 flux exhibited high temporal and spatial variability similar to that in most lakes. In contrast, diffusive CO2 and N2O flux showed distinct seasonal variability and similar spatial patterns, emphasizing the necessity for increasing the temporal resolution in GHG flux measurements for integrated assessments. Water temperature and/or oxygen concentrations were crucial in regulating seasonal variability in GHG emissions. However, no limnological parameter was found to govern the spatial GHG patterns. The frequent advection mixing caused by wind-driven currents might be the reason for the low spatial heterogeneity in GHGs, in which the inconspicuous mechanism requires further research. It was recommended that at least 11 locations were needed for representative whole lake flux estimates at each sampling campaign. In addition, the maximum peak of CH4 in the oxycline from Lake Fuxian indicated that low CH4 oxidation occurred in oxic waters. Overall, this study suggests that, compared to other tropical and temperate lakes, this alpine deep lake is a minor CO2 and CH4 source, but a moderate N2O source, which are horizontally uniform.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , China , Gases de Efeito Estufa/análise , Lagos , Metano/análise , Óxido Nitroso/análise , Água
2.
Sci Total Environ ; 721: 137716, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32171141

RESUMO

Aquatic ecosystems are recognized as a source of N2O in accordance with the flux estimations of rivers and estuaries; however, limited research has been conducted on large lakes. In this study, we report the annual N2O dynamics of a large eutrophic freshwater lake located in the subtropical zone of East China. The dissolved N2O concentrations in Lake Chaohu were observed to be between 8.5 and 92.3 nmol L-1 with emission rates between 0.3 and 53.6 µmol m-2 d-1, exhibiting considerable spatiotemporal variability. The average seasonal N2O concentrations were obtained, with the highest value of 23.4 nmol L-1 found in winter and the lowest value of 12.7 nmol L-1 found in summer. In contrast to the N2O concentrations observed, the highest N2O emission rates occurred during summer, while the lowest emission rates occurred in autumn. The emissions of N2O were substantially high in the western part of the lake, which suffers from serious eutrophication. In addition, the hotspots of N2O emissions have been found around the inflowing mouth of the Nanfei River, which transports large amounts of nutrients into the lake. The results suggest that anthropogenically enhanced nutrient inputs may have a significant role in the production and emission of N2O. However, the negative relationship between the surface water temperature and the N2O concentration suggests that, N2O fluxes might be influenced by other inconspicuous mechanisms. In the future the nitrogen dynamics of water and sediment in the lake should be collated to reveal mechanisms controlling N2O emissions. In summary, Lake Chaohu acts as a source of N2O with its most eutrophic part contributing 54.9% of the total N2O emissions of the whole lake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...