Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1290885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38016064

RESUMO

Pyroptosis, a novel form of programmed cell death (PCD) discovered after apoptosis and necrosis, is characterized by cell swelling, cytomembrane perforation and lysis, chromatin DNA fragmentation, and the release of intracellular proinflammatory contents, such as Interleukin (IL) 8, IL-1ß, ATP, IL-1α, and high mobility group box 1 (HMGB1). Our understanding of pyroptosis has increased over time with an increase in research on the subject: gasdermin-mediated lytic PCD usually, but not always, requires cleavage by caspases. Moreover, new evidence suggests that pyroptosis induction in tumor cells results in a strong inflammatory response and significant cancer regression, which has stimulated great interest among scientists for its potential application in clinical cancer therapy. It's worth noting that the side effects of chemotherapy and radiotherapy can be triggered by pyroptosis. Thus, the intelligent use of pyroptosis, the double-edged sword for tumors, will enable us to understand the genesis and development of cancers and provide potential methods to develop novel anticancer drugs based on pyroptosis. Hence, in this review, we systematically summarize the molecular mechanisms of pyroptosis and provide the latest available evidence supporting the antitumor properties of pyroptosis, and provide a summary of the various antitumor medicines targeting pyroptosis signaling pathways.


Assuntos
Neoplasias , Piroptose , Humanos , Apoptose , Caspases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias/tratamento farmacológico
2.
Life Sci ; 330: 121974, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37495078

RESUMO

AIMS: This study aimed to elucidate the role of Interleukin-11 (IL-11) in hepatic fibrosis (HF) and its potential as a therapeutic target for HF treatment. MATERIALS AND METHODS: We investigated IL-11 expression in patients with varying degrees of liver injury through ELISA and immunohistochemistry. A CCl4-induced HF mouse model was constructed to study IL-11 expression and cell apoptosis using Western blotting (WB) and other techniques. The expression of IL-11 was silenced using rAAV8 in the mouse model. In vitro stimulation of hepatic stellate cells (LX-2) with TGF-ß1, and of LO-2 cells with exogenous IL-11, were performed. Cell supernatants of TGF-ß1-stimulated LX-2 were used to culture LO-2 cells, with apoptosis monitored via flow cytometry and WB. KEY FINDINGS: Increased IL-11 levels were observed in patients and the HF mouse model, with silencing reducing IL-11 expression. In vitro experiments revealed increased endogenous IL-11 in TGF-ß1-stimulated LX-2 cells and an increase in apoptotic index, IL11RA, and gp130 in IL-11-stimulated LO-2 cells. Cell apoptosis was reduced in the siRNA/IL11, siRNA/IL11RA, and anti-IL11 groups. WB and immunohistochemistry results showed upregulated p-JNK, p-ERK, and p-P53 expressions in the CCl4-induced HF mouse model and IL-11-treated LO-2 cells. SIGNIFICANCE: Our findings suggest IL-11 enhances LX-2 cell activation and proliferation, and promotes LO-2 cell apoptosis through JNK/ERK signaling pathways. This suggests that targeting IL-11 secretion may serve as a potential therapeutic strategy for HF, providing a foundation for its clinical application in HF treatment.


Assuntos
Células Estreladas do Fígado , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Células Estreladas do Fígado/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Interleucina-11/metabolismo , Cirrose Hepática/patologia , Hepatócitos/metabolismo , Modelos Animais de Doenças
3.
Biochem Pharmacol ; 210: 115497, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907496

RESUMO

Hepatic fibrosis (HF) is a reversible wound-healing response characterized by excessive extracellular matrix (ECM) deposition and secondary to persistent chronic injury. Bromodomain protein 4 (BRD4) commonly functions as a "reader" to regulate epigenetic modifications involved in various biological and pathological events, but the mechanism of HF remains unclear. In this study, we established a CCl4-induced HF model and spontaneous recovery model in mice and found aberrant BRD4 expression, which was consistent with the results in human hepatic stellate cells (HSCs)- LX2 cells in vitro. Subsequently, we found that distriction and inhibition of BRD4 restrained TGFß-induced trans-differentiation of LX2 cells into activated, proliferative myofibroblasts and accelerated apoptosis, and BRD4 overexpression blocked MDI-induced LX2 cells inactivation and promoted the proliferation and inhibited apoptosis of inactivated cells. Additionally, adeno-associated virus serotype 8-loaded short hairpin RNA-mediated BRD4 knockdown in mice significantly attenuated CCl4-induced fibrotic responses including HSCs activation and collagen deposition. Mechanistically, BRD4 deficiency inhibited PLK1 expression in activated LX2 cells, and ChIP and Co-IP assays revealed that BRD4 regulation of PLK1 was dependent on P300-mediated acetylation modification for H3K27 on the PLK1 promoter. In conclusion, BRD4 deficiency in the liver alleviates CCl4-induced HF in mice, and BRD4 participates in the activation and reversal of HSCs through positively regulating the P300/H3K27ac/PLK1 axis, providing a potential insight for HF therapy.


Assuntos
Células Estreladas do Fígado , Proteínas Nucleares , Humanos , Camundongos , Animais , Proteínas Nucleares/metabolismo , Células Estreladas do Fígado/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
Biochem Pharmacol ; 210: 115451, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758707

RESUMO

Circular RNAs (circRNAs) are a newly identified form of non-coding RNA that play a crucial role in various pathological processes. However, the expression profile and function of circRNAs in hepatic fibrosis (HF) remain largely unknown. In this study, we showed that a novel circRNA ASPH (circASPH) mediates HF by targeting the miR-139-5p/Notch1 axis. We investigated the expression profile of circRNAs in hepatocyte exosomes of mice with HF using circRNA-sequencing and found significant upregulation of circASPH. Loss- and gain-of-function analysis of circASPH was performed to assess its role in HF. Furthermore, we performed luciferase reporter assay, RNA pull-down, and fluorescence in situ hybridization analyses and confirmed that circASPH directly binds to miR-139-5p. We also found that circASPH was upregulated in liver fibrogenesis. Downregulation of circASPH expression inhibited hepatic stellate cell (HSC) activation and proliferation, induced apoptosis, and attenuated mouse liver fibrogenic injury. Mechanistically, circASPH directly targeted miR-139-5p to regulate the expression of Notch1 in HF. Thus, downregulation of circASPH may suppress the activation of HSCs and HF through the circASPH/miR-139-5p/Notch1 axis. Our findings indicated that circASPH may be a potential biomarker for HF diagnosis and therapy.


Assuntos
MicroRNAs , RNA Circular , Camundongos , Animais , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Estreladas do Fígado/metabolismo , Hibridização in Situ Fluorescente , Cirrose Hepática/metabolismo , Apoptose , Proliferação de Células/genética
5.
Cells ; 11(20)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291167

RESUMO

Cell death is a vital physiological or pathological phenomenon in the development process of the organism. Ferroptosis is a kind of newly-discovered regulated cell death (RCD), which is different from other RCD patterns, such as apoptosis, necrosis and autophagy at the morphological, biochemical and genetic levels. It is a kind of iron-dependent mode of death mediated by lipid peroxides and lipid reactive oxygen species aggregation. Noteworthily, the number of studies focused on ferroptosis has been increasing exponentially since ferroptosis was first found in 2012. The liver is the organ that stores the most iron in the human body. Recently, it was frequently found that there are different degrees of iron metabolism disorder and lipid peroxidation and other ferroptosis characteristics in various liver diseases. Numerous investigators have discovered that the progression of various liver diseases can be affected via the regulation of ferroptosis, which may provide a potential therapeutic strategy for clinical hepatic diseases. This review aims to summarize the mechanism and update research progress of ferroptosis, so as to provide novel promising directions for the treatment of liver diseases.


Assuntos
Ferroptose , Hepatopatias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Peróxidos Lipídicos , Ferro/metabolismo , Hepatopatias/terapia
6.
Mol Ther Methods Clin Dev ; 26: 191-206, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859692

RESUMO

Liver fibrosis is a wound-healing response that results from various chronic damages. If the causes of damage are not removed or effective treatments are not given in a timely manner, it will progress to cirrhosis, even liver cancer. Currently, there are no specific medical therapies for liver fibrosis. Adeno-associated virus (AAV)-mediated gene therapy, one of the frontiers of modern medicine, has gained more attention in many fields due to its high safety profile, low immunogenicity, long-term efficacy in mediating gene expression, and increasingly known tropism. Notably, increasing evidence suggests a promising therapeutic potential for AAV-mediated gene therapy in different liver fibrosis models, which helps to correct abnormally changed target genes in the process of fibrosis and improve liver fibrosis at the molecular level. Moreover, the addition of cell-specific promoters to the genome of recombinant AAV helps to limit gene expression in specific cells, thereby producing better therapeutic efficacy in liver fibrosis. However, animal models are considered to be powerless predictive of tissue tropism, immunogenicity, and genotoxic risks in humans. Thus, AAV-mediated gene therapy will face many challenges. This review systemically summarizes the recent advances of AAV-mediated gene therapy in liver fibrosis, especially focusing on cellular and molecular mechanisms of transferred genes, and presents prospective challenges.

7.
Cells ; 11(12)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35741077

RESUMO

Circular RNA (circRNA) is a kind of endogenous non-coding RNA (ncRNA), which is produced by the reverse splicing of precursor mRNA (pre mRNA). It is widely expressed in a variety of biological cells. Due to the special formation mode, circRNA does not have a 5' terminal cap and 3' poly (A) tail structure. Compared with linear RNA, circRNA is more stable to exonuclease and ribonuclease. In addition, circRNA is structurally conserved, has a stable sequence and is tissue-specific. With the development of high-throughput sequencing and bioinformatics technology, more and more circRNAs have been found. CircRNA plays an important pathophysiological role in the occurrence and development of alcoholic liver injury (ALI), hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases. Our group has been committed to the research of liver disease diagnosis and treatment targets. We review the function and mechanism of circRNA in ALI, HF and HCC, expecting to provide new ideas for the diagnosis, treatment, and prognosis of liver diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Biomarcadores , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , MicroRNAs/genética , RNA Circular/genética , RNA Mensageiro/genética
8.
Life Sci ; 288: 120180, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843736

RESUMO

Alcoholic liver injury is a liver cell dysfunction disease caused by long-term or excessive alcohol consumption. Inhibiting the production of inflammatory factors is an important way to alleviate liver injury. Interleukin-9 (IL-9) is one of the members of IL-2Rγc family. It has multiple biological functions. Previous studies have shown that IL-9 is a cytokine that is closely related to inflammatory disease, allergic diseases, autoimmune diseases, and parasitic infections. However, no systematic studies have been performed to address the role of IL-9 in ALI. This project aims to investigate the effects of IL-9 on macrophage-related inflammatory response and hepatocyte apoptosis in alcohol-induced liver injury by injecting adeno-associated virus (AAV9) into tail vein. In the ALI model group, western blot and ELISA assays demonstrated that the expression of IL-9 was reduced. Overexpression of IL-9 relieved the injury and reduced the serum levels of IL-6, TNF-α in EtOH-induced ALI mouse model. Moreover, by using western blot, it was indicated that IL-9 can inhibit the expression of pro-apoptotic protein, such as cleaved caspase 3 and Bax. In vitro, mouse recombinant protein IL-9 inhibited the expression of IL-6, TNF-α in EtOH-induced RAW264.7 cells. Moreover, flow cytometry and western blot results displayed that macrophage-derived IL-9 inhibited hepatocyte apoptosis. After silencing STAT3 in AML-12 cells, the anti-apoptotic effect of macrophage-derived IL-9 was further enhanced. These results indicate that IL-9 reduces the production of pro-inflammatory factors in ALI. Furthermore, macrophage-derived IL-9 can reduce hepatocyte apoptosis by inhibiting the activation of the STAT3 pathway.


Assuntos
Apoptose , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Etanol/toxicidade , Hepatócitos/patologia , Interleucina-9/metabolismo , Macrófagos/imunologia , Fator de Transcrição STAT3/metabolismo , Animais , Depressores do Sistema Nervoso Central/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Interleucina-9/genética , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/genética
9.
J Cell Physiol ; 237(2): 1471-1485, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34698390

RESUMO

Alcohol metabolism causes hepatocytes to release damage-associated molecular patterns (DAMPs). This includes mitochondrial DNA (mtDNA), which is generated and released from damaged hepatocytes and contributes to liver injury by producing proinflammatory cytokines. STING is a pattern recognition receptor of DAMPs known to control the induction of innate immunity in various pathological processes. However, the expression profile and functions of STING in the Gao binge ethanol model remain poorly understood. We demonstrated that STING is upregulated in the Gao binge ethanol model. STING functions as an mtDNA sensor in the Kupffer cells of the liver and induces STING-signaling pathway-dependent inflammation and further aggravates hepatocyte apoptosis in the Gao binge ethanol model. This study provides novel insights into predicting disease progression and developing targeted therapies for alcoholic liver injury.


Assuntos
Etanol , Hepatócitos , Animais , DNA Mitocondrial/genética , Hepatócitos/metabolismo , Inflamação/patologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
10.
FASEB J ; 35(7): e21700, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34105828

RESUMO

Histone deacetylases (HDACs), especially HDAC2, play a role in alleviating liver fibrosis; however, the specific upstream regulation mechanism is unknown. Herein, TargetScan was used to predict the potential upstream targets of HDAC2, and the role of miR-455-3p was explored. The dual luciferase reporter assay showed that miR-455-3p binds to the 3' UTR of HDAC2 mRNA. Additionally, miR-455-3p was downregulated in the liver tissues of patients with cirrhosis and mice with liver fibrosis, as well as in primary HSCs isolated from fibrotic mouse livers and TGF-ß-treated LX-2 cells. In contrast, it is highly expressed in the reversal stage of hepatic fibrosis and MDI-cultured LX-2 cells. Our functional analyses showed that miR-455-3p overexpression facilitated apoptosis and reduced the expression of pro-fibrotic markers and the proliferation of activated LX-2 cells. On the contrary, miR-455-3p inhibition converted inactivated LX-2 cells into activated, proliferative, fibrogenic cells. Interestingly, restoration of HDAC2 expression partially blocked the function of miR-455-3p. Downregulated miR-455-3p expression can be restored by DNA methyltransferases in activated LX-2 cells. Methylation-specific PCR, bisulfite sequencing PCR, and chromatin immunoprecipitation assays indicated that the methylation level of miR-455-3p promoter CpG islands was elevated in TGF-ß-treated LX-2 cells and that miR-455-3p was downregulated in activated LX-2 cells by DNA hypermethylation, which is mediated by DNMT3b and DNMT1. In conclusion, miR-455-3p acts as a liver fibrosis suppressor by targeting HDAC2, and its deficiency further aggravates the reversal phase of fibrosis. Thus, the epigenetics mediated miR-455-3p/HDAC2 axis may serve as a novel potential therapeutic target for clinical treatment of hepatic fibrosis.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Histona Desacetilase 2/metabolismo , Cirrose Hepática/prevenção & controle , MicroRNAs/genética , Animais , Apoptose , Tetracloreto de Carbono/toxicidade , Proliferação de Células , Células Estreladas do Fígado/citologia , Histona Desacetilase 2/genética , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
11.
Eur J Pharmacol ; 862: 172642, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31493407

RESUMO

Alcoholic hepatitis (AH) is a widely prevalent liver-related disease that results from long-term alcohol consumption. However, there is still a lack of effective treatment. Previous studies have reported that circular RNAs (circRNAs) are related to the development of various diseases. However, the function of circRNAs and their roles in AH are largely unknown. Therefore, we used bioinformatics analysis to investigate changes in circRNA expression and predict their functions in AH. An AH model was established in C57BL/6J mouse treated by Gao-binge modeling method, and then the circRNA profile of liver tissues was screened by Next Generation Sequencing. By comparing circRNA expression in liver tissues in AH model groups and normal controls, we identified that circRNAs were differently expressed during AH pathogenesis, and then differential expression levels of selected circRNAs were validated by qRT-PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were employed to predict the functions of these circRNAs. A total of 20 circRNAs were found to be differentially expressed in AH model groups (p ≤ 0.05) compared with the expression of the normal controls respectively. Among them, 9 circRNAs were significantly up-regulated, and the other 11 were down-regulated. Ten circRNAs were randomly selected to verify the reliability of these profiles by qRT-PCR. After obtaining the parental genes of the differentially expressed circRNAs, the top 30 enrichment GO entries and KEGG pathways were annotated. Then, we selected significantly differentially expressed circRNA (mm9_ circ_018725) for further analysis in vitro. Although the exact mechanisms and biological functions of these circRNAs in the development of AH need further exploration, our findings do suggest that knockdown of mm9_ circ_018725 could inhibit hepatocyte apoptosis induced by EtOH in vitro. In addition, suppression of mm9_ circ_018725 reduced the release of pro-inflammatory cytokines from EtOH-stimulated Raw264.7 cells. Thus, our study brings us closer to understanding the pathogenic mechanisms and finding new molecular targets for the clinical treatment of alcoholic hepatitis.


Assuntos
Etanol/toxicidade , Hepatite Alcoólica/genética , Fígado/patologia , RNA Circular/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Biologia Computacional , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hepatite Alcoólica/etiologia , Hepatite Alcoólica/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , RNA Circular/genética , Regulação para Cima/efeitos dos fármacos
12.
Theranostics ; 9(15): 4308-4323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31285763

RESUMO

Background: Liver fibrosis is characterized by extensive deposition of extracellular matrix (ECM) components in the liver. RCAN1 (regulator of calcineurin 1), an endogenous inhibitor of calcineurin (CaN), is required for ECM synthesis during hypertrophy of various organs. However, the functional role of RCAN1 in liver fibrogenesis has not yet been addressed. Methods: We induced experimental liver fibrosis in mice by intraperitoneal injection of 10 % CCl4 twice a week. To investigate the functional role of RCAN1.4 in the progression of liver fibrosis, we specifically over-expressed RCAN1.4 in mice liver using rAAV8-packaged RCAN1.4 over-expression plasmid. Following the establishment of the fibrotic mouse model, primary hepatic stellate cells were isolated. Subsequently, we evaluated the effect of RCAN1.4 on hepatic fibrogenesis, hepatic stellate cell activation, and cell survival. The biological role and signaling events for RCAN1 were analyzed by protein-protein interaction (PPI) network. Bisulfite sequencing PCR (BSP) was used to predict the methylated CpG islands in the RCAN1.4 gene promoter. We used the chromatin immunoprecipitation (ChIP assay) to investigate DNA methyltransferases which induced decreased expression of RCAN1.4 in liver fibrosis. Results: Two isoforms of RCAN1 protein were expressed in CCl4-induced liver fibrosis mouse model and HSC-T6 cells cultured with transforming growth factor-beta 1 (TGF-ß1). RCAN1 isoform 4 (RCAN1.4) was selectively down-regulated in vivo and in vitro. The BSP analysis indicated the presence of two methylated sites in RCAN1.4 promoter and the downregulated RCAN1.4 expression levels could be restored by 5-aza-2'-deoxycytidine (5-azadC) and DNMTs-RNAi transfection in vitro. ChIP assay was used to demonstrate that the decreased RCAN1.4 expression was associated with DNMT1 and DNMT3b. Furthermore, we established a CCl4-induced liver fibrosis mouse model by injecting the recombinant adeno-associated virus-packaged RCAN1.4 (rAAV8-RCAN1.4) over-expression plasmid through the tail vein. Liver- specific-over-expression of RAN1.4 led to liver function recovery and alleviated ECM deposition. The key protein (a member of the NFAT family of proteins) identified on PPI network data was analyzed in vivo and in vitro. Our results demonstrated that RCAN1.4 over-expression alleviates, whereas its knockdown exacerbates, TGF-ß1-induced liver fibrosis in vitro in a CaN/NFAT3 signaling-dependent manner. Conclusions: RCAN1.4 could alleviate liver fibrosis through inhibition of CaN/NFAT3 signaling, and the anti-fibrosis function of RCAN1.4 could be blocked by DNA methylation mediated by DNMT1 and DNMT3b. Thus, RCAN1.4 may serve as a potential therapeutic target in the treatment of liver fibrosis.


Assuntos
Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Proteínas Musculares/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Animais , Apoptose , Tetracloreto de Carbono , Núcleo Celular/metabolismo , Dependovirus/metabolismo , Regulação para Baixo/genética , Inativação Gênica , Cirrose Hepática/genética , Cirrose Hepática/patologia , Masculino , Metilação , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Transporte Proteico , DNA Metiltransferase 3B
13.
Toxicology ; 421: 9-21, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951781

RESUMO

4-Methylcoumarin-[5,6-g]-hesperetin (4-MCH) is a hesperidin derivative produced by the structural modification of hesperetin. Alcoholic hepatitis (AH) is the origin of many serious liver diseases that are accompanied by hepatic inflammation. In this study, we detected the anti-inflammatory activity of 4-MCH in EtOH fed mice and examined the potential molecular mechanism of this activity. We found that 4-MCH suppressed the release of inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in primary liver macrophages isolated from mice and in EtOH-treated RAW264.7 cells. In addition, we showed that the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) was down-regulated in vivo and in vitro in AH. Furthermore, 4-MCH acted as an activator of PPAR-γ, which could therefore ameliorate the inhibitory effects of EtOH on the expression of PPAR-γ. The impairment of PPAR-γ function (T0070907 or PPAR-γ siRNA treatment) resulted in greater inflammation than that in the control group. Conversely, over-expression of PPAR-γ further reduced the release of inflammatory cytokines from EtOH-stimulated RAW264.7 cells. Additional investigations showed that 4-MCH significantly inhibited the phosphorylation of p65. Collectively, these results indicate that 4-MCH alleviated the inflammatory reaction through PPAR-γ activation via the NF-κB-p65 signaling pathway, which regulates the expression of IL-6 and TNF-α in AH.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cumarínicos/uso terapêutico , Hepatite Alcoólica/tratamento farmacológico , Hesperidina/análogos & derivados , Hesperidina/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Cumarínicos/farmacologia , Etanol/toxicidade , Hepatite Alcoólica/genética , Hepatite Alcoólica/metabolismo , Hesperidina/farmacologia , Interleucina-6/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , PPAR gama/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/genética
14.
Front Pharmacol ; 9: 553, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892223

RESUMO

The activation of hepatic stellate cells (HSCs) is a central event in the progression of liver fibrosis. Multiple studies proved that DNA methylation might accelerate HSCs activation. However, the specific pathogenesis of liver fibrosis remains not fully addressed. Our laboratory performed Genome methylation screening to find out the methylated gene in mice with liver fibrosis. The pilot experiments showed that the promoter of prostacyclin synthase (PTGIS) gene was hypermethylated in CCl4-induced liver fibrosis mouse model. Moreover, the down-regulated PTGIS expression can be restored by DNMTs-RNAi and 5-aza-2-deoxycytidine (5-azadC), an inhibitor of DNA methyltransferase (DNMTs). Methylation-specific PCR (MSP) showed that the methylation status of PTGIS in HSC-T6 cells cultures with TGF-ß1 (10 ng/mL) was elevated compared with control group. Chromatin immunoprecipitation (ChIP) assay indicated that PTGIS methylation was mainly induced by DNMT1 and DNMT3b. We further investigated the function of PTGIS in liver fibrosis by Recombinant Hepatic-adeno-associated virus (rAAV8)-PTGIS overexpression. The data indicated that overexpression of PTGIS in mouse liver accompanied by elevated apoptosis-related proteins expression in primary HSCs. Conversely, PTGIS silencing mediated by RNAi enhanced the expression of α-SMA and COL1a1 in vitro. Those results illustrated that adding PTGIS expression inhibits the activation of HSCs and alleviates liver fibrosis. Therefore, our study unveils the role of PTGIS in HSCs activation, which may provide a possible explanation for CCl4-mediated liver fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...